您现在的位置是: 首页 > 教育新闻 教育新闻
高考文科数学复习_高考数学文科常考必考题型
tamoadmin 2024-05-27 人已围观
简介1.高考文科数学考满分技巧2.湖南高考数学知识点总结3.谁能告诉我学习文科各科的方法,明年高考,我的数学和英语很差,数学期末考了36现在你们高考应该改版了吧但是凭我个人经验你的目标分数应该容易拿到大概在选择题和填空题得50分,问答题做一,二个题24分就差不多了选择题和填空题的题型大概有:集合,函数,排列,解析函数,等(具体的就看试卷)选择题可以去学学解题方法问答题的第一二题,一般是集合和排列,概率
1.高考文科数学考满分技巧
2.湖南高考数学知识点总结
3.谁能告诉我学习文科各科的方法,明年高考,我的数学和英语很差,数学期末考了36
现在你们高考应该改版了吧
但是凭我个人经验
你的目标分数应该容易拿到
大概在选择题和填空题得50分,问答题做一,二个题24分就差不多了
选择题和填空题的题型大概有:集合,函数,排列,解析函数,等(具体的就看试卷)
选择题可以去学学解题方法
问答题的第一二题,一般是集合和排列,概率,几何
这几个题目中集合是最容易的平时的时候多做这种类似的题目,高考应该能做出来,几何的话就要学会建析,那么一二问是绝对没有问题的
概率和排列的话平时也可以看看,考试的时候就看运气吧
问答题会有个解析几何,这个是最难的,如果能够记住几个公式,那么考试的时候写上去也会有几分
高考文科数学考满分技巧
文科数学答题技巧及方法
1.适当多做题,养成良好的解题习惯
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路.刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律.对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正.在平时要养成良好的解题习惯.
让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如.实践证明:越到关键时候,你所表现的解题习惯与平时练习无异.如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的.
2.调整心态,正确对待考试
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳.调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪.特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感.
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度.对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥.
3.课内重视听讲,课后及时复习
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法.上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同.特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点.首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举.
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决.在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系.
2文科高考数学答题技巧
1.充分利用考前五分钟
按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是这五分钟可以看题。我发现很多考生拿到试卷之后,就从第一个题开始看,我给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
2.进入考试阶段先要审题
审题一定要仔细,一定要慢。我发现数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。
小编推荐:高考文科数学130分答题技巧总结
3.培养自己一次就做对的习惯
现在有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。所以我希望学生在考试的时候,一定要培养自己一次就做对的习惯,不要指望腾出时间来检查。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在那些难题里面出不来,抬起头来的时候已经开始收卷了。
湖南高考数学知识点总结
要想在高考数学科目中取得好成绩,须明确考什么、怎样考。根据近几年高考数学命题趋势,就高考数学三种题型的应考,现为考生提出如下建议。
1.认真研究《高考考试说明》《高考考纲》
《高考考试说明》和《高考考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。
命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。
《高考考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖,活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。
2.多从思维的高度审视知识结构
高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.换个方式看例题 拓展思维空间
那些看课本和课本例题一看就懂,一做题就懵的高三学生一定要看这条!不少高三学生看书和看例题,往往看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,高分高考小编提醒各位高三学生,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。
4.精做试题 探究出题的目的
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到很多题。你要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
一节课与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。
一道题的价值不在于做对、做会,而在于你明白了这题想考你什么。从这个角度去领悟题,不仅可以快速的找到解题的突破口,而且不容易进入出题老师设置的陷阱。
5.学会优化解题过程
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。
要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
6.分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
(1)遗憾之错。就是分明会做,反而做错了的题;
(2)似非之错。记忆得不准确,理解得不够透彻,应用得不够自如;回答不严密、不完整等等。
(3)无为之错。由于不会答错了或猜的,或者根本没有答,这是无思路、不理解,更谈不上应用的问题。原因找到后就消除遗憾、弄懂似非、力争有为。
切实解决“会而不对、对而不全”的老大难问题。
7.错一次反思一次
每次考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。因此平时注意把错题记下来,做错题笔记包括三个方面:
(1)记下错误是什么,最好用红笔划出。
(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。
(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。
你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。
8.把好的做法形成一种习惯
柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。
另外将平常的考试看成是积累考试经验的重要途径,把平时考试当作高考,从各方面不断的调试,逐步适应。注意书写规范,重要步骤不能丢,丢步骤等于丢分。根据解答题评卷实行“分段评分”的特点,你不妨做个心理换位,根据自己的实际情况,从平时做作业“全做全对”的要求中,转移到“立足于完成部分题目或题目的部分”上来,不要在一道题上花费太多时间,有时放弃可能是最佳选择。
谁能告诉我学习文科各科的方法,明年高考,我的数学和英语很差,数学期末考了36
考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!
高考文科数学考点总结第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。
第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联络比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含引数。
湖南高考文科数学考点一:直线方程
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且
推论:如果两条直线的倾斜角为则∥.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件
4. 直线的交角:
⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为引数,不包括在内
湖南高考文科数学考点二:轨迹方程
一、求动点的轨迹方程的基本步骤
⒈建立适当的座标系,设出动点M的座标;
⒉写出点M的 *** ;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。
⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
湖南高考文科数学考点三:导数
一、函式的单调性
在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.
f′x≥0?fx在a,b上为增函式.
f′x≤0?fx在a,b上为减函式.
二、函式的极值
1、函式的极小值:
函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.
2、函式的极大值:
函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.
极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
三、函式的最值
1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.
2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.
四、求可导函式单调区间的一般步骤和方法
1、确定函式fx的定义域;
2、求f′x,令f′x=0,求出它在定义域内的一切实数根;
3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;
4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.
湖南高考文科数学考点四:不等式
1理解不等式的性质及其证明。
导读
不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:
加强化归意识,把比较大小问题转化为实数的运算;
通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;
强化函式的性质在大小比较中的重要作用,加强知识间的联络;
不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a
一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;
对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;
对于含参问题的大小比较要注意分类讨论。
2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
导读
1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。
2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。
3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。
3掌握分析法、综合法、比较法证明的简单不等式。
导读
1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。
2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。
3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。
湖南高考文科数学考点五:几何
1棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
4圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
7球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:
数学要先打牢基础,再通过练习提高,你可依照如下步骤学习,试一试:
1把教材速读一到两遍,对所有知识有概略的了解,形成书上知识的整体结构。在开学之间,或开学一周内完成。
2把所有公式每天抄一遍。每次只花得到1-2分钟。抄7、8遍后自然会很熟。也可一周抄一遍,或在上物理课前一分钟开抄。要把整本书所有公式一起抄。抄到5、6遍后。可一边抄,一边在心里推导公式。
3再速读教材一遍,注意公式推导。在公式抄写到5、6遍后,对公式很熟悉了。可再将整本教材读一遍。
4再速读教材一遍,注意例题解法。公式熟练了,在大脑中对整个知识的结构也比较详细了。才可重点关注如何做题。如果前面几个步骤的基础没打牢,看习题解法有可能看不懂。
5读课后习题,看能否在心中解出。如果对例题的解法不熟练,解课后习题就会比较累。可把课后习题快速读一遍。在心里掂量一下看能否解出。如果有太多的题不能解出。请回到前面的步骤去打基础。
6读带解法的习题集。千变万化的习题解法,其实大同小异,可归为几个大类。但若一题一题地做,难以看出其中的联系。对习题集的解法快速阅读,可在很短时间内接触到大量的解法,从而发现其中的联系,总结出规律。阅读习题集时,遇到看不懂的解法,不要强求看懂,做个记号,跳过。过几天再看一遍,重点看带记号的。如果有太多的看不懂,说明基础不牢,概念不清,回到前面几个步骤去打基础。
在速读教材时,有些概念,在一开始可能会感觉理解很难,比较混乱,不强求理解。每隔一两周,再读一遍。多速读几次后,自然就会理解。“书读百遍,其义自见”。
英语学习的方法:
1,每天大声朗读单词或短文十分钟至半小时,不强求理解文章意义,不强行在短时间内纠正个别错误发音。
2,每天听对音频材料十分钟至半小时,可边听边看文字,不强求盲听和理解意义,可在听之前将文章朗读一遍。
3,如上的听读短时间感觉不到进步,坚持一两个月后就会进步明显,半年后,形成飞跃。此后,可对听读更高要求。
4,分组设置情境,引导学生进行英语谈话和讨论。
5,不死记单词,通过快速阅读各种由易到难的教材和阅读材料来扩大单词量。
6,阅读时,先朗读课后单词,再速读课文,不认识单词作记号,不深究文章意义。第一天,以此方法读1、2、3课,第二天,读2、3、4课,以此类推,每次读三课,每课读三遍(可灵活调整)。
7,当有一定的单词基础、阅读基础和语感之后,再引入对语法规则、读音规则和拼写规则的了解和掌握。
常见的错误观点和方法
1,要求发音必须准确,不厌其烦地一遍一遍纠正学生错误发音。
2,认为单词必须死记,要求记住所有学过单词的拼写,词意和用法。
3,在基础不牢时,就引入大量语法和规则的学习,并要求记牢并会正确运用。
4,朗读或阅读时,要求理解文章的每一句意义,并能能进行句法语法分析。