您现在的位置是: 首页 > 教育资讯 教育资讯

2016年高考数学答案文_2016年高考数学文科全国一卷

tamoadmin 2024-05-26 人已围观

简介1.2016年广东高考全国一卷文科数学难度2.2016高考广西名校模拟试卷押题卷理科数学答案1、2016年高考全国共有九套试卷,其中教育部考试中心统一命制四套,另有北京、天津、上海、浙江、江苏分省自主命制五套。由于高考试卷不同,难度是有差异的。2、其实高考试卷的难度也是因人而异,不同的考生对高考试卷难度的理解是不一样的,湖南省今年高考试卷的难度基本上还是稳定的,高考试卷难不难主要还要看考生本人的答

1.2016年广东高考全国一卷文科数学难度

2.2016高考广西名校模拟试卷押题卷理科数学答案

2016年高考数学答案文_2016年高考数学文科全国一卷

1、2016年高考全国共有九套试卷,其中教育部考试中心统一命制四套,另有北京、天津、上海、浙江、江苏分省自主命制五套。由于高考试卷不同,难度是有差异的。

2、其实高考试卷的难度也是因人而异,不同的考生对高考试卷难度的理解是不一样的,湖南省今年高考试卷的难度基本上还是稳定的,高考试卷难不难主要还要看考生本人的答卷体验。

2016年广东高考全国一卷文科数学难度

1、2016年山西省高考理科数学难度中等,没有超出教育部公布的考试大纲范围。

2、2016年山西省高考使用的是全国卷,全国卷的试卷难度基本上是非常稳定的,每年变化不会太大。

2016高考广西名校模拟试卷押题卷理科数学答案

2016年广东高考全国一卷文科数学难度较全国范围内难度不高,但是相较于以往广东省的卷子难度更大。

2016年广东省去年首次采用全国一卷,文科数学只有49.5分,理科67分,在全国属于比较低的水平。根据全国卷难度而言,2016年理科数学和文科数学都不算太难,但较以前广东卷难度而言,难度提高了不少。

另外从2016年开始,很多省市加入到全国卷考试战队,统一的试卷取消了区域差别,全国卷考试成为高考趋势。在这样的大背景下,依照学生实际需要,精准定位的分层教辅势必会成为教育领域的一大变革趋势。

广东高考理科数学

理科数学题遵循了往届全国卷命题原则,尤其是考试说明中的大部分知识点,选择题、填空题考查了函数图像、三角函数、概率、解析几何、向量、框图、二项式定理(理科)、数列等知识点,大部分属于常规题型和难度。

是学生在高三平时的训练中常见的类型。同时,在立体几何、线性规划等题目上进行了一些创新,线性规划考查了应用类型,立体几何常见的球没单独考查,而是在三视图中考查。

2014年浙江省高考名校《创新》冲刺模拟试卷

理科数学(一)

参考答案

1、B 

2、A

3、A 

4、B 

5、A 

6、B 

7、B 

8、C 

9、A 

10、D

11、55,

12、1,

13、,

14、90,

15、,

16、9,

17、48.6

17题提示:想象一下机器人走法,瞬间到达的意思是:若第一步设置为1.9米,那么第一步跨好后所用时间为0秒;然后间隔时间为1.9秒后走第二步,所用时间仍为0秒。即跨两步用了1.9秒,以此类推:走26步(49.4米)用了25*1.9=47.5秒,过1.9秒后跨最后一步瞬间超过50米,因此共化了49.4秒。所以正确答案应该是第一步设置为1.8米,那么答案是48.6秒。

18.解:由得,,即

(1)令则,

故的单调递增区间为.

(2)因,所以,即,又因为

所以,又由余弦定理得,

所以,又,所以,所以

19.解:(1)设等差数列的公差为,

因为即

解得

所以.

所以数列的通项公式为.

(2)因为,

所以数列的前项和

假设存在正整数、,且,使得、、成等比数列,

则.

即.

所以.

因为,所以.

即.因为,所以.

因为,所以.

此时.

所以存在满足题意的正整数、,且只有一组解,即,.

20.

解:

(1)证明:连,∵四边形是矩形,为中点,

∴为中点,

在中,为中点,故

∵平面,平面,平面;

(2)依题意知

∴平面

∵平面,∴,

∵为中点,∴

结合,知四边形是平行四边形

∴,

而,∴

∴,即

∴平面,

∵平面,

(3):如图,分别以所在的直线为轴建立空间直角坐标系

设,则

易知平面的一个法向量为,

设平面的一个法向量为,则

故,即

令,则,故

∴,

依题意,,,

即时,平面与平面所成的锐二面角为

21.

解:(1)由题可得:e=.

以原点为圆心,椭圆C的短半轴长为半径的圆与直线x+y+=0相切,

=b,解得b=1.

再由

a2=b2+c2,可解得:a=2.

椭圆的标准方程:.

(2)由(1)可知:A(-2,0),B(2,0),直线l的方程为:x=2.

设G(x0,y0)(y0≠0),于是Q(x0,2y0),

且有,即4y02=4-x02.

直线AQ的方程为:,

解得:即,

直线QN的斜率为:,

∴直线QN的方程为:

∴点O到直线QN的距离为

直线QN与以AB为直径的圆O相切.

22.解:

(1),∵在内恒成立

∴在内恒成立,即在内恒成立,

设,

,,,,

故函数在内单调递增,在内单调递减,

∴,∴

(2)令

则,∵在内恒成立

∴在内恒成立,∴在内单调递增

∵是的零点,∴

∴当时,,即,

∴时,∵,∴,

且即

∴,

文章标签: # 高考 # 难度 # 全国