您现在的位置是: 首页 > 教育资讯 教育资讯

2013高考数列汇编,2013 高考数学

tamoadmin 2024-05-29 人已围观

简介1.数列解题方法技巧总结2.2013山东高考数学难不难3.高考数学数列解题技巧4.2013北京高考文数第20题第三问的答案有2处看不懂怎么来的(见下文红字部分)。。求数学高人指点,感谢!5.汇编语言:构造一个数列,前两个数分别为1和2,第3个数开始S(n+2)=2S(n)+3S(n+1)6.汇编实现斐波那契数列前30项(基于给出的程序修改)n=4代入Sn=(-1)^n*an-1/(2^n)得s4=

1.数列解题方法技巧总结

2.2013山东高考数学难不难

3.高考数学数列解题技巧

4.2013北京高考文数第20题第三问的答案有2处看不懂怎么来的(见下文红字部分)。。求数学高人指点,感谢!

5.汇编语言:构造一个数列,前两个数分别为1和2,第3个数开始S(n+2)=2S(n)+3S(n+1)

6.汇编实现斐波那契数列前30项(基于给出的程序修改)

2013高考数列汇编,2013 高考数学

n=4代入Sn=(-1)^n*an-1/(2^n)

得s4=a4-1/16,

即a4+S3=a4-1/16

∴S3=-1/16,

n=3代入Sn=(-1)^n*an-1/(2^n)

得s3=-a3-1/8,

a3=-1/8-S3

=-1/8-(-1/16)

=-1/16.

同理可得?a1=-1/4

n为偶数时,sn-1=-1/(2^n)

n为奇数时,Sn=(-1)^n*an-1/(2^n) ?

得sn-sn-1=an

2an=-an-1+1/(2^n)

得a2=1/4

S1+S2+S3+...+S100=(-1/4+0-1/16+0-...........-1/2^200+0)

=-(1/4+1/16+..........+1/2^200)由首项为1/4,公比为1/4,可得该等比数列前50项的和

=-(1-(1/4)^50)/3=(1/2^100-1)/3.

数列解题方法技巧总结

 数列是高中数学的重要内容,又是学习高等数学的基础。高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。下面是我为大家整理的关于高中数学数列 方法 和技巧,希望对您有所帮助。欢迎大家阅读参考学习!

1高中数学数列方法和技巧

 一.公式法

 如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.

 二.倒序相加法

 如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.

 三.错位相减法

 如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.

 四.裂项相消法

 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.

 五.分组求和法

 若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.

2高中数学数列问题的答题技巧

 高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

 题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

 题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。

 对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

 对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

 总之,每次碰到一道陌生的数列题,要进行 总结 ,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

3高考数学解题方法

 解题过程要规范

 高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

 解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。

 先熟后生

 高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

4高中生学好数学的诀窍

 首先、准备好 笔记本 和草稿本,笔记本不是让你记公式记概念,那些东西书上都有,没必要再誊一遍到笔记本上,笔记本上主要记老师给的例题。毕竟老师是很有 经验 的,他们给的例题一定是很有代表性的,必要的时候可以背一背例题的解题方法,理解思路。

 草稿本就是有些不是很重要的题,老师让举一反三这类的东西,就没必要写在笔记上,但是一定要跟着算,在纸上写两笔算一下绝对比你光看光想的效果要好得多。

 其次、上课一定集中注意力,要和老师有一定的互动,时间长了,上课百分之九十的时间老师都是在看着你讲课,你不点头表示明白了她就不往下讲。。毕竟一节课四十分钟,一个老师一节课平均分给每个学生也就不到一分钟,所以自私点说,就是要给自己争取时间。

 课下有问题就问,最好不要问同学,尤其是以为脑子很聪明所以数学学的好的同学,这种人千万别问,倒不是说人家不愿意给你讲,而是现在毕竟是应试 教育 ,那些聪明的同学上课不一定听讲有多认真,有些人做题就是根据自己的思路走,那些解题方法可能适合于他们并不适合你,所以问题一定找老师,老师会给你一套最适合应试的解题方法。

高中数学数列方法和技巧相关 文章 :

1. 高中数学的100个学习方法与高中数学48条秒杀的公式

2. 高中数学学习方法和技巧是什么

3. 高中数学学习的方法技巧

4. 高中数学数列通项公式的求法

5. 高中数学六种解题技巧与五种数学答题思路

6. 高二数学学习方法和技巧大全

7. 高中数学50个解题小技巧

8. 高中数学学习方法及策略

9. 高中数学学习方法总结

2013山东高考数学难不难

 人生需要反思,总结才能远航,回首往夕,收获的是经验和提高。下面就是我整理的数列解题方法技巧总结,一起来看一下吧。

 学生们在高中的数学学习过程中如果能够充分掌握高中数学数列试题的解题方法和技巧,这对于在大学期间学习数学会有很大的帮助。在最近几年的数学高考中,数列知识点的考查已经成为高考出题人比较看重的一项考点,甚至有一部分拔高题也都和数列有着直接的关系。可是在高中数学的学习阶段,很多的学生对于高中数学数列试题的解题方法和技巧还非常欠缺,对有一些问题和内容并没有得到充分的理解和吸收,往往在解题过程中,出现这样那样的问题。所以,探索和研究不同类型数列的解题方法和技巧,能够帮助学生更好地学好高中的数学。

  高中数学数列试题教学中的解题思路与技巧

  1.对数列概念的考查

 在高中数列试题中,有一些试题可以直接通过带入已学的通项公式或求和公式,就可以得到答案,面对这一种类型的试题,没有什么技巧而言,我们只需熟练掌握相关的数列公式即可。

 例如:在各项都为正数的等比数列{b}中,首项b1=3,b1+b2+b3=21,那么b3+b4+b5等于多少?

 解析:(1)本道试题主要是对正项数列的概念以及等比数列的通项公式和求和公式知识点的考查,考查学生对数列基础知识和基本运算的掌握能力。

 (2)本试题要求学生要熟练掌握老师在课堂上所教的通项公式和求和公式。

 (3)首先让我们来求公比,很明显q不等1,那么我们可以根据我们所学过的等比数列前项和公式,列出关于公比的方程,即3(1-q3)/(1-q)=21。

 对于这个方程,我们首先要选择其运算的方式,要求学生平时的练习过程中,要让学生能够熟练地将高次方程转化为低次方程进行运算。

  2.对数列性质的考察

 有些数列的试题中,经常会变换一些说法来考查学生对数列的基本性质的`理解和掌握能力。

 例如:己知等差数列{xn},其中xl+x7=27,求x2+x3+x5+x6等于多少?

 解析:我们在课堂上学习过这样的公式:等差数列和等比数列中m+n=p+q,我们可以充分利用这一特性来解此题,即:

 xl+x7= x2+x6= x3+x5=27,

 因此,x2+x3+x5+x6=(x2+x6)+(x3+x5)=27+27=54

 这种类型的数列试题要求教师在课堂教学中,对数列的性质竟详细讲解,仔细推导。使得学生能够真正的理解数列性质的来源。

  3.对求通项公式的考察

 ①利用等差、等比数列的通项公式,求通项公式

 ②利用关系an={S1,n=1;Sn-Sn-1,n≥2}求通项公式

 ③利用叠加、叠乘法求通项公式

 ④利用数学归纳法求通项公式

 ⑤利用构造法求通项公式.

  4.求前n项和的一些方法

 在最近几年的数学高考试题中,数列通项公式和数列求和这两个知识点是每年必考的,因此,在高中数学数列的课堂教学中,教师要对数列求和通项公式这方面的知识点进行细致重点的讲解。数列求和的主要解题方法有错位相减法、分组求和法与合并求和法,下面对三种数列求和的解题方法进行详细说明。

 (1)错位相减法

 错位相减法主要应用于等比数列的求和中,在最近几年的高考试题当中,以此方法来求解数列求和的试题经常会有所体现。这一类型的试题解题方法主要是运用于诸如{等差数列·等比数列}数列前n项和的求和中。

 例如:已知{xn}是等差数列,其前n项和是Sn,{yn}是等比数列,且x1=y1=2, x4+y4=27, S4-y4=10,求(1)求数列{xn}与{yn}的通项公式;(2)Tn= xny1+xn-1y2+…+x1yn,n∈N*证明Tn+12=-2xn+10yn,n∈N*

 解析:(1)xn=3n-1,yn=2n;

 (2)Tn= 2xn+22xn-1+23xn-2+…+2nx1,

 2Tn= 22xn+23xn-1+…+2nx2+2n+1x1

 计算得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+1=12(1-2n+1)/(1-2+2n+2-6n+2)=10×2n-6n-10

 -2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10

 所以,Tn+12=-2xn+10yn,n∈N*

 错位相减法主要应用于形如an=bncn,即等差数列·等比数列,这样的数列求和试题运算中,解此类题的技巧是:首先分别列出等差数列和等比数列的前n的和,即Sn,然后再分别将Sn的两侧同时乘以等比数列的公比q,得出qSn;最后错一位,再将两边的式子进行相减就可以了。

 (2)分组法求和

 在高中数列的试题当中,往往会遇到一部分没有规律的数列试题,它们初看上去既不属于等差数列也不属于等比数列,但是如果将此类型的数列进行拆分,就可以得到我们所了解的等差数列和等比数列,遇到此类型的数列试题,我们就可以通过分组法求和的方法进行解题,首先将数列进行拆分,通过得到的等差数列和等比数列进行运算,最后将其结合在一起得出试题的答案。

 (3)合并法求和

 在高考数列的试题中,往往会遇到一些非常特殊的题型,它们初看上去没有规律可循,但是通过合并和拆分,就可以找出它们的特殊性质。这就要求我们教师平时要锻炼学生对数列的合并能力,通过合并找出规律,最终成功地解决这类特殊数列的求和问题。

  结束语

 数列知识是各种数学知识的连接点,在数学考试中,往往是基于数列知识为基础,对学生的综合数学知识进行考查。在高中数列学习过程中,首先要做好数列基本概念和基本性质的掌握,否则任何解题技巧都无济于事。

高考数学数列解题技巧

转自中国教育网:6月7日下午17时05分,山东数学考试结束,考生陆续走出考场。据悉,今年数学总体难度不高,同学普遍感觉比平时考的简单,尤其是后面的大题。不过,今年考题顺序有变,不像一二诊时是三角函数为第一道大题。今年第一道大题是数列,且没有第二问,很简单。

2013北京高考文数第20题第三问的答案有2处看不懂怎么来的(见下文红字部分)。。求数学高人指点,感谢!

高考数学数列解题技巧:基本概念掌握、判定数列类型、善用通项公式、善于列方程、巧用数列性质。

1、基本概念掌握:需要准确掌握数列的基本概念,如等差数列、等比数列、通项公式、公差、首项、末项等,这是解题的基础。

2、判定数列类型:在数列问题中,有时需要对数列类型进行鉴定,如等差、等比或等差等比混合数列等,而不同类型的数列在求解时具有不同的方法和技巧。

3、善用通项公式:通项公式是解数列问题中最为关键的公式之一,可以轻松求出任意项的值,因此需要熟练掌握各个类型的数列通项公式。

4、善于列方程:对于一些较复杂的数列问题,可以通过列方程来解决,可以将问题转换为一些简单的方程求解,这是数列解题的一种重要思维方法。

5、巧用数列性质:数列问题中有些性质和规律可以帮助我们解决问题,如等差数列的前n项和公式、等比数列的前n项和公式、等比数列的中项公式等,在实践中要灵活掌握这些性质和规律,熟练运用到解题过程中。

高考数学数列概念

高考数学数列是高考数学中的一个重点考点。数列是指将一系列的数按照一定的规律排列成一个序列的数学概念。

数列可以用通项公式表示,通项公式指的是一个数列中任意一项与其下标之间的关系式,使用通项公式可以求解数列中任意位置的数值,或者利用求和公式求出数列的前n项和。数列分为等差数列、等比数列、等差等比数列等类型。

在高考数学中,数列经常涉及到以下的问题:已知一个数列的前几项或某个特定的数值,求这个数列的通项公式;已知数列的通项公式和某一项的值,求解数列中任意一项的值;已知一个数列的前n项和,求出这个数列的通项公式等等。在解决这些问题的过程中,需要灵活运用各种公式和解题技巧,掌握数列的基本性质和规律,从而顺利应对数列这一考点。

数列是高考数学的重要部分,需要掌握数列的常见性质和公式,加强数列的理论学习和解题能力,以应对高考数学的挑战。

汇编语言:构造一个数列,前两个数分别为1和2,第3个数开始S(n+2)=2S(n)+3S(n+1)

1)

根据B(i)的定义,B(i)=min{a(i+1),a(i+2),...,a(n)}<=min{a(i+2),...,a(n)}=B(i+1)

数列B是递增数列

2)B(n-1)=a(n)

3)B(1)<=B(2)<=...<=B(n-1)=a(n)

4)根据前面的结论B(1)<a(1)<a(2)<...<a(n-1)

而根据定义有:B(1)=min{a(2),a(3),...,a(n-1),a(n)}

B(1)只能等于a(n)

5)根据3)和4),所有的B(i)=a(n),i=1,2,..,n-1

要特别注意的是a(n)并不属于等差数列中的元素。

6)由此有结论A(i+1)=B(i+1)+d(i+1)=a(n)+d(i+1)

A(i)=a(n)+d(i)

a(i+1)-a(i)=A(i+1)-A(i)=d(i+1)-d(i)=d

汇编实现斐波那契数列前30项(基于给出的程序修改)

dseg?segment

n?dw?30000?;the?max?element's?value

q?dw?256?dup(0)

len?dw?0

dseg?ends

assume?cs:cseg,?ds:dseg

cseg?segment

start:

mov?ax,?dseg

mov?ds,?ax

;1?create?queue

lea?si,?q

mov?word?ptr?[si],?1?;first?element

add?si,?2

mov?word?ptr?[si],?2?;second?element

;S(n+2)=2S(n)+3S(n+1)->conertto

;S(n)?=?2S(n-2)?+?3S(n-1)

mov?bx,3

mov?len,?1

l0:

inc?len

add?si,?2

mov?ax,?[si-4]

shl?ax,?1?;2*s(n-4)

add?[si],?ax?;

mov?ax,?[si-2];?S(n-1)

mul?bx?;ax=ax*3

add?[si],?ax?;?[si]?=?2*s(n-2)?*?3*s(n-1)

mov?ax,?[si]

cmp?ax,?n?;?>n?

jb?l0;next?element

;print?it

mov?ax,?len;

call?print

mov?ax,0e0dh

int?10h

mov?al,0ah

int?10h

mov?cx,?len

lea?si,?q

p0:

mov?ax,?[si]

call?print

add?si,?2

loop?p0

mov?ax,?4c00h

int?21h

print?proc?near

push?cx

xor?cx,?cx

mov?bx,?10

q0:

xor?dx,?dx

div?bx

xor?dx,?0e30h

push?dx

inc?cx

cmp?ax,?0

jnz?q0

q1:

pop?ax

int?10h

loop?q1

mov?al,20h?;?print?a?space

int?10h

pop?cx

ret

print?endp

cseg?ends

end?start

算到第 25 项,就超出 16 位二进制数了。

需要用到 32 位数的运算方法。

楼主提供的这些程序,基本都不能用了。

必须重新编写程序。

程序已经编好,输出如下:

……

28: 0514229

29: 0832040

30: 1346269

文章标签: # 数列 # 公式 # 方法