您现在的位置是: 首页 > 教育资讯 教育资讯

2017高考数学考点_2017数学高考卷

tamoadmin 2024-05-31 人已围观

简介1.高考数学立体几何评分标准及评分细则2.2017年数学高考卷子的六道大题3.高考数学常考题型答题技巧与方法有哪些4.2017年江苏高考数学试卷结构 各题型分值是多少分5.2017年高考数学试卷具体有哪些特点? 导语:距离2017年高考只剩下不到两个礼拜的时间了,在此我先预祝各位高考学子稳定发挥,乃至超长发挥,考出自己满意的分数,此外,我也为大家分享高考数学答题我们必须注意的一些问题,希望对大家有

1.高考数学立体几何评分标准及评分细则

2.2017年数学高考卷子的六道大题

3.高考数学常考题型答题技巧与方法有哪些

4.2017年江苏高考数学试卷结构 各题型分值是多少分

5.2017年高考数学试卷具体有哪些特点?

2017高考数学考点_2017数学高考卷

 导语:距离2017年高考只剩下不到两个礼拜的时间了,在此我先预祝各位高考学子稳定发挥,乃至超长发挥,考出自己满意的分数,此外,我也为大家分享高考数学答题我们必须注意的一些问题,希望对大家有帮助。

2017高考数学答题要注意的问题

 1.答题工具:

  答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。禁止使用涂改液、修正带或透明胶带改错。必须用0.5毫米黑色墨水签字笔作答,作图题可先用铅笔绘出,确认后,再用0.5毫米黑色墨水签字笔描清楚。

 2.答题规则与程序:

 ①先填空题,再做解答题。②先填涂再解答。③先易后难。

 3.答题位置:

 按题号在指定的答题区域内作答,如需对答案进行修改,可将需修改的内容划去,然后紧挨在其上方或其下方写出新的答案,修改部分在书写时与正文一样,不能超出该题答题区域的黑色矩形边框,否则修改的答案无效。

 4.解题过程及书写格式要求:

 《考试说明》中对选择填空题提出的要求是?正确、合理、迅速?,因此,解答的基本策略是:

 快运算要快,力戒小题大做;

 稳变形要稳,防止操之过急;

 全答案要全,避免对而不全;

 活解题要活,不要生搬硬套;

 细审题要细,不能粗心大意。

 关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。

 关于解答题,考生不仅要提供出最后的结论,还得写出主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,而且所填结果应力求简练、概括的准确;其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。

 在答题过程中,关键语句和关键词是否答出是多得分的`关键,如何答题才更规范?答题过程要整洁美观、逻辑思路清晰、概念表达准确、答出关键语句和关键词。比如要将你的解题过程转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生忽视。因此,卷面上大量出现?会而不对对而不全?的情况。

 如立体几何论证中的?跳步?,使很多人丢失得分,代数论证中的?以图代证?,尽管解题思路正确甚至很巧妙,但是由于不善于把?图形语言?准确地转换为?文字语言?,尽管考生?心中有数?却说不清楚,因此得分少,只有重视解题过程的语言表述,?会做?的题才能?得分?。对容易题要详写,过程复杂的试题要简写,答题时要会把握得分点。

 5.常见的规范性的问题:

 解与解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示,三角方程的通解中必须加 ;在写区间或集合时,要正确地书写圆括号、方括号或花括号,区间的两端点之间,几何的元素之间用逗号隔开。

 带单位的计算题或应用题,最后结果必须带单位,特别是应用题解题结束后一定要写符合题意的?答?。分类讨论题,一般要写综合性结论。任何结果要最简。排列组合题,无特别声明,要求出数值。函数问题一般要注明定义域(特别是反函数)

 6.答题规范化的训练:

 要养成良好的答题习惯,做到解题的规范性,需要从点滴做起,重在平时,坚持不懈,养成习惯,做好以下几点:

 ①平时作业要落实;

 ②测试考试看效果;

 ③评分标准做借鉴。

高考数学立体几何评分标准及评分细则

3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。

参考答案为-16,18.只取第一象限点了

2017年数学高考卷子的六道大题

高考数学立体几何评分标准评分及评分细则:

(2017全国3,文19)(本小题满分12分)如图,四面体ABCD中,△ABC是正三角形,AD=CD.

1.证明线面垂直时,不要忽视“面内两条直线为相交直线”这一条件,如第(1)问中,学生易忽视“DO∩BO=O”,导致条件不全而减分;

2.求四面体的体积时,要注意“等体积法”的应用,即合理转化四面体的顶点和底面,目的是底面积和顶点到底面的距离容易求得;

3.注意利用第(1)问的结果:在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题中,由(1)及题设知∠ADC=90°.

4.要注意书写过程规范,计算结果正确.书写规范是计算正确的前提,在高考这一特定的环境下,学生更要保持规范书写,力争一次成功,但部分学生因平时习惯,解答过程中书写混乱,导致失误过多.

扩展资料:

高考数学立体几何解题方法:

坐标系法:一般是两步给分,一是各关键点的的坐标,二是结果。

几何法:按你所写的关键步骤分步给分。

二者各有优缺点,坐标系法简单方便,容易入手。但是如果结果算错了,得到的步骤分很少。几何法较难,但是结果算错了只要步骤对,也能得到大部分分值。

高考数学常考题型答题技巧与方法有哪些

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.

20.(12分)

已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae?^x+(a﹣2)e^x﹣x.

(1)?讨论的单调性;

(2)?若有两个零点,求a的取值范围.

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.

(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

2017年江苏高考数学试卷结构 各题型分值是多少分

高考像漫漫人生路上的一道坎,无论成败与否,我认为现在都不重要了,重要的是要 总结 高考的得与失,以便在今后的人生之路上迈好每一个坎!下面就是我给大家带来的高考数学常考题型答题技巧与 方法 ,希望大家喜欢!

高考数学常考题型答题技巧与方法

1、解决绝对值问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0两种情况为或型

②配成平方型:

(----)2+(----)2=0两种情况为且型

7、数学中两个最伟大的解题思路

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。即:

9、观察法

10、代数式求值

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

方程中除过未知数以外,含有的 其它 字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

12、恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14、平移规律

图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域图像在X轴上对应的部分

值域图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像点处有值,图像最低点处有最小值

奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

方程的根

函数图像与x轴交点横坐标

不等式解集端点

17、一元二次不等式的解法

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

判别且求根

画出示意图

解集横轴中

18、一元二次方程根的讨论

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

二次函数图像

不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19、基本函数在区间上的值域

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

(1)定义域没有特别限制时---记忆法或结论法;

(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

截出一断

得出结论

20、最值型应用题的解法

应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量

列函数

求最值

写结论

21、穿线法

穿线法是解高次不等式和分式不等式的方法。其一般思路是:

首项化正

求根标根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

高考数学常考题型答题技巧与方法有哪些相关 文章 :

1. 2019高考数学选择题万能答题技巧及方法

2. 高中数学常考题型答题技巧与方法及顺口溜

3. 高考数学必考题型以及题型分析

4. 高考数学选择题答题技巧有哪些

5. 2017高考数学常考的题型总结

6. 2017高考常考数学题型归纳

7. 高考数学答题技巧及复习方法

8. 高考数学不同题型的答题技巧

9. 高考数学的核心考点及答题技巧方法

2017年高考数学试卷具体有哪些特点?

1-14是填空题,每题5分,15-20是解答题,前三题每题14分,后三题每题16分,每个解答题有2到3小题,共160分。

理科还有附加题,第21题是四选二,21a是平面几何证明,21b是矩阵,21c是坐标系与参数方程,21d是不等式,考生从四条中选两题作答,每题10分,满分20分。22和23题不确定,可以考概率分布,空间向量,解析几何(侧重抛物线),计数原理,数学归纳法,二项式定理等,也是每题10分,附加题一共40分。

高中数学合集百度网盘下载

链接:提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

文章标签: # 高考 # 数学 # 方法