您现在的位置是: 首页 > 教育资讯 教育资讯
08年数学高考数学_2008年高考数学难度
tamoadmin 2024-05-31 人已围观
简介1.我想知道2008年福建高考数学(文)试题 的第6题的具体过程,有会的赶紧告诉我,谢谢了!2.2008年的福建省高考理科数学第21题第2问,答案上说“设直线AB的方程为x=my+1”,为什么不设成“y=kx+b”3.2008年石家庄高考数学平均分4.求2008年江苏高考数学试卷(带答案的)绝密启用前2008年普通高等学校招生全国统一考试(江苏卷)数 学本试卷分第I卷(填空题)和第II卷(解答
1.我想知道2008年福建高考数学(文)试题 的第6题的具体过程,有会的赶紧告诉我,谢谢了!
2.2008年的福建省高考理科数学第21题第2问,答案上说“设直线AB的方程为x=my+1”,为什么不设成“y=kx+b”
3.2008年石家庄高考数学平均分
4.求2008年江苏高考数学试卷(带答案的)
绝密★启用前
2008年普通高等学校招生全国统一考试(江苏卷)
数 学
本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的
准考证号、姓名,并将条形码粘贴在指定位置上.
2.选择题答案使用2B
铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择
题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.
4.保持卡面清洁,不折叠,不破损.
5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.
参考公式:
样本数据 , , , 的标准差
其中 为样本平均数
柱体体积公式
其中 为底面积, 为高
一、填空题:本大题共1小题,每小题5分,共70分.
1. 的最小正周期为 ,其中 ,则 = ▲ .
解析本小题考查三角函数的周期公式.
答案10
2.一个骰子连续投2 次,点数和为4 的概率 ▲ .
解析本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故
答案
3. 表示为 ,则 = ▲ .
解析本小题考查复数的除法运算.∵ ,∴ =0, =1,因此
答案1
4.A= ,则A Z 的元素的个数 ▲ .
解析本小题考查集合的运算和解一元二次不等式.由 得 ,∵Δ<0,∴集合A 为 ,因此A Z 的元素不存在.
答案0
5. , 的夹角为 , , 则 ▲ .
解析本小题考查向量的线性运算.
= , 7
答案7
6.在平面直角坐标系 中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .
解析本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.
答案
7.算法与统计的题目
8.直线 是曲线 的一条切线,则实数b= ▲ .
解析本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.
答案ln2-1
9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程: ,请你求OF的方程:
( ▲ ) .
解析本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.
答案
10.将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
. . . . . . .
按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .
解析本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 .
答案
11.已知 , ,则 的最小值 ▲ .
解析本小题考查二元基本不等式的运用.由 得 ,代入 得
,当且仅当 =3 时取“=”.
答案3
12.在平面直角坐标系中,椭圆 1( 0)的焦距为2,以O为圆心, 为半径的圆,过点 作圆的两切线互相垂直,则离心率 = ▲ .
解析设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故 ,解得 .
答案
13.若AB=2, AC= BC ,则 的最大值 ▲ . ?
解析本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,
根据面积公式得 = ,根据余弦定理得
,代入上式得
=
由三角形三边关系有 解得 ,
故当 时取得 最大值
答案
14. 对于 总有 ≥0 成立,则 = ▲ .
解析本小题考查函数单调性的综合运用.若x=0,则不论 取何值, ≥0显然成立;当x>0 即 时, ≥0可化为,
设 ,则 , 所以 在区间 上单调递增,在区间 上单调递减,因此 ,从而 ≥4;
当x<0 即 时, ≥0可化为 ,
在区间 上单调递增,因此 ,从而 ≤4,综上 =4
答案4
二、解答题:解答应写出文字说明,证明过程或演算步骤.
15.如图,在平面直角坐标系 中,以 轴为始边做两个锐角 , ,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为 .
(Ⅰ)求tan( )的值;
(Ⅱ)求 的值.
解析本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.
由条件的 ,因为 , 为锐角,所以 =
因此
(Ⅰ)tan( )=
(Ⅱ) ,所以
∵ 为锐角,∴ ,∴ =
16.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,
求证:(Ⅰ)直线EF ‖面ACD ;
(Ⅱ)面EFC⊥面BCD .
解析本小题考查空间直线与平面、平面与平面的位置关系的判定.
(Ⅰ)∵ E,F 分别是AB,BD 的中点,
∴EF 是△ABD 的中位线,∴EF‖AD,
∵EF 面ACD ,AD 面ACD ,∴直线EF‖面ACD .
(Ⅱ)∵ AD⊥BD ,EF‖AD,∴ EF⊥BD.
∵CB=CD, F 是BD的中点,∴CF⊥BD.
又EF CF=F,∴BD⊥面EFC.∵BD 面BCD,∴面EFC⊥面BCD .
17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,
CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为 km.
(Ⅰ)按下列要求写出函数关系式:
①设∠BAO= (rad),将 表示成 的函数关系式;
②设OP (km) ,将 表示成x 的函数关系式.
(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.
解析本小题主要考查函数最值的应用.
(Ⅰ)①由条件知PQ 垂直平分AB,若∠BAO= (rad) ,则 , 故
,又OP= 10-10ta ,
所以 ,
所求函数关系式为
②若OP= (km) ,则OQ=10- ,所以OA =OB=
所求函数关系式为
(Ⅱ)选择函数模型①,
令 0 得sin ,因为 ,所以 = ,
当 时, , 是 的减函数;当 时, , 是 的增函数,所以当 = 时, 。这时点P 位于线段AB 的中垂线上,且距离AB 边
km处。
18.设平面直角坐标系 中,设二次函数 的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;
(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.
解析本小题主要考查二次函数图象与性质、圆的方程的求法.
(Ⅰ)令 =0,得抛物线与 轴交点是(0,b);
令 ,由题意b≠0 且Δ>0,解得b<1 且b≠0.
(Ⅱ)设所求圆的一般方程为
令 =0 得 这与 =0 是同一个方程,故D=2,F= .
令 =0 得 =0,此方程有一个根为b,代入得出E=―b―1.
所以圆C 的方程为 .
(Ⅲ)圆C 必过定点(0,1)和(-2,1).
证明如下:将(0,1)代入圆C 的方程,得左边=0 +1 +2×0-(b+1)+b=0,右边=0,
所以圆C 必过定点(0,1).
同理可证圆C 必过定点(-2,1).
19.(Ⅰ)设 是各项均不为零的等差数列( ),且公差 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:
①当n =4时,求 的数值;②求 的所有可能值;
(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列 ,其中任意三项(按原来顺序)都不能组成等比数列.
解析本小题主要考查等差数列与等比数列的综合运用.
(Ⅰ)①当n=4 时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.
若删去 ,则有 即
化简得 =0,因为 ≠0,所以 =4 ;
若删去 ,则有 ,即 ,故得 =1.
综上 =1或-4.
②当n=5 时, 中同样不可能删去首项或末项.
若删去 ,则有 = ,即 .故得 =6 ;
若删去 ,则 = ,即 .
化简得3 =0,因为d≠0,所以也不能删去 ;
若删去 ,则有 = ,即 .故得 = 2 .
当n≥6 时,不存在这样的等差数列.事实上,在数列 , , ,…, , , 中,
由于不能删去首项或末项,若删去 ,则必有 = ,这与d≠0 矛盾;同样若删
去 也有 = ,这与d≠0 矛盾;若删去 ,…, 中任意一个,则必有
= ,这与d≠0 矛盾.
综上所述,n∈{4,5}.
(Ⅱ)略
20.若 , , 为常数,
且
(Ⅰ)求 对所有实数成立的充要条件(用 表示);
(Ⅱ)设 为两实数, 且 ,若
求证: 在区间 上的单调增区间的长度和为 (闭区间 的长度定义为 ).
解析本小题考查充要条件、指数函数与绝对值函数、不等式的综合运用.
(Ⅰ) 恒成立
(*)
因为
所以,故只需 (*)恒成立
综上所述, 对所有实数成立的充要条件是:
(Ⅱ)1°如果 ,则的图象关于直线 对称.因为 ,所以区间 关于直线 对称.
因为减区间为 ,增区间为 ,所以单调增区间的长度和为
2°如果 .
(1)当 时. ,
当 , 因为 ,所以 ,
故 =
当 , 因为 ,所以
故 =
因为 ,所以 ,所以 即
当 时,令 ,则 ,所以 ,
当 时, ,所以 =
时, ,所以 =
在区间 上的单调增区间的长度和
=
(2)当 时. ,
当 , 因为 ,所以 ,
故 =
当 , 因为 ,所以
故 =
因为 ,所以 ,所以
当 时,令 ,则 ,所以 ,
当 时, ,所以 =
时, ,所以 =
在区间 上的单调增区间的长度和
=
综上得 在区间 上的单调增区间的长度和为
我想知道2008年福建高考数学(文)试题 的第6题的具体过程,有会的赶紧告诉我,谢谢了!
在这里能够打高考数学试卷?这么多的数学符号!
如果你非得要在这里看,而拒绝网页和,那么我就提供给你!
绝密★启用前
2008年普通高等学校招生全国统一考试
文科数学(全国卷Ⅰ)(必修1+选修Ⅰ)
本试卷第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至9页。考试结束后,将本试卷和答题卡一并交回。
考生注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件A、B互斥,那么 球的表面积公式
P(A+B)=P(A)+P(B) S=4∏R2
如果事件A、B相互独立,那么 其中R表示球的半径
P(A+B)=P(A)+P(B) S=4∏R2
P(A?B)=P(A)?P(B) 球的体积公式
如果事件A在一次试验中发生的概率是P,那么 V= ∏R3
n次独立重复试验中事件A恰好发生k次的概率 其中R表示球的半径
Pn(k)=CknPk(1-p)n-k(k=0,1,2,…,n)
一、 选择题
(1)函数y= 的定义域为
(A){x|x≤1} (B) {x|x≥1}
(C){x|x≥1或x≤0} (D) {x|0≤x≤1}
(2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是
(3)(1+ ) 的展开式中x 的系数
(A)10 (B)5 (C) (D)1
(4)曲线y=x -2x+4在点(1,3)处的切线的倾斜角为
(A)30° (B)45° (C)60° (D)12°
(5)在△ABC中, =c, =b.若点D满足 =2 ,则 =
(A) (B) (C) (D)
(6)y=(sinx-cosx) -1是
(A)最小正周期为2π的偶像函数 (B)最小正周期为2π的奇函数
(C)最小正周期为π的偶函数 (D)最小正周期为π的奇函数
(7)已知等比数列{a }满足a +a =3,a + a =6,则a =
(A)64 (B)81 (C)128 (D)243
(8)若函数y=f(x)的图像与函数y=1n 的图像关于直线y=x对称,则f(x)=
(A) (B) (C) (D)
(9)为得到函数y=cos(x+ )的图像,只需将函数y=sinx的图像
(A)向左平移 个长度单位 (B)向右平移 个长度单位
(C)向左平移 个长度单位 (D)向右平移 个长度单位
(10)若直线 =1与图 有公共点,则
(A) (B) (C) (D)
(11)已知三棱柱ABC- 的侧棱与底面边长都相等, 在底面ABC内的射影为△ABC的中心,则A 与底面ABC所成角的正弦值等于
(A) (B) (C) (D)
(12)将1,2,3填入3×3的方格中,要求每行、第列都没有重复数字,下面是一种填法,则不同的填写方法共有
(A)6种 (B)12种 (C)24种 (D)48种
2008年普通高等学校招生全国统一考试
文科数学(必修+选修1)
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
3.本卷共10小题,共90分。
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
(注意:在试题卷上作答无效)
(13)若x,y满足约束条件 则z=2x-y的最大值为 .
(14)已知抛物线y=ax2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .
(15)在△ABC中,∠A=90°,tanB= .若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e= .
(16)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A-BD-C为120°,则点A到△BCD所在平面的距离等于 .
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)
(注意:在试题卷上作答无效)
设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.
(Ⅰ)求边长a;
(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.
(18)(本小题满分12分)
(注意:在试题卷上作答无效)
四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD= ,AB=AC.
(1) 证明:AD⊥CE;
(2) 设侧面ABC为等边三角形,求二面角C-AD-E的大小.
(19)(本小题满分12分)
(注意:在试题卷上作答无效)
在数列{ }中, =1,an+1=2an+2n.
(Ⅰ)设bn= .证明:数列{bn}是等差数列;
(Ⅱ)求数列{an}的前n项和Sn.
(20)(本小题满分12分)
(注意:在试题卷上作答无效)
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.
(21)(本小题满分12分)
(注意:在试题卷上作答无效)
已知函数f(x)=x3+a x2+x+1,a R.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)设函数f(x)在区间(- )内是减函数,求α的取值范围.
(22)(本小题满分12分)
(注意:在试题卷上作答无效)
双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知| |、| |、| |成等差数列,且 与 同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.
2008年的福建省高考理科数学第21题第2问,答案上说“设直线AB的方程为x=my+1”,为什么不设成“y=kx+b”
我10年毕业的,也是文科
我是想说能把题目列出来吗。。?
好吧,我帮你找到题目了。数学幸好还没全部忘记——
解:
本题的正弦值是AA1/AC1,?所以求AA1和AC1.
AB=BC?=2,所以AC=2又根号2,
又因为AA1=1=CC1,所以勾股定理,AC1=3
所以AA1/AC1=1/3
2008年石家庄高考数学平均分
关键是假设方程上的技巧
直线知道过点(1,0),不一定直线就有斜率,
当直线为x=1时,虽然直线过点(1,0),但是斜率不存在
而直线若假设成x=my+1,当m=0是就可以包括这种情况
注意题设条件。若斜率一定存在,就可以假设成y=kx+b
若一开始就是假设y=kx+b,这样会漏掉斜率不存在的可能。
求2008年江苏高考数学试卷(带答案的)
83.5。
08年高考理综全国卷总分为640分,石家庄数学平均分为83.5左右算是不错的水平了。
08年高考理综全国卷总分为640分,其中语文数学各120,英语100,理化生各100。08年数学难度系数还是很大的,能够得高分的学生不多。
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。