您现在的位置是: 首页 > 教育资讯 教育资讯
2014数列高考题,2014高考数学数列
tamoadmin 2024-06-04 人已围观
简介1.高中数学数列(高考题)2.怎么求等比数列,和等差数列的和3.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.4.高考数列大题求解1.(必修5 P68复习参考题B组T1改编)在公比大于1的等比数列{an}中,a3a7=72,a2+a8=27,则a12=( )A.96 B.64C.72 D.48A
1.高中数学数列(高考题)
2.怎么求等比数列,和等差数列的和
3.高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.
4.高考数列大题求解
1.(必修5 P68复习参考题B组T1改编)在公比大于1的等比数列{an}中,a3a7=72,a2+a8=27,则a12=( )
A.96 B.64
C.72 D.48
A [解析] 由题意及等比数列的性质知a3a7=a2a8=72,又a2+a8=27,
所以a2,a8是方程x2-27x+72=0的两个根,
所以a8=3,(a2=24,)或a8=24,(a2=3,)又公比大于1,
所以a8=24,(a2=3,)所以q6=8,即q2=2,
所以a12=a2q10=3×25=96.
2.(必修5 P58练习T2改编)等比数列{an}的前n项之和为Sn,S5=10,S10=50,则S15的值为( )
A.60 B.110
C.160 D.210
D [解析] 由等比数列前n项和性质知,S5,S10-S5,S15-S10成等比数列,即(S10-S5)2=S5(S15-S10),
所以S15=S5((S10-S5)2)+S10
=10((50-10)2)+50=210.故选D.
3.(必修5 P39练习T5改编)设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有Tn(Sn)=4n-3(2n-3),则b5+b7(a9)+b8+b4(a3)的值为________.
[解析] 因为{an},{bn}为等差数列,所以b5+b7(a9)+b8+b4(a3)=2b6(a9)+2b6(a3)=2b6(a9+a3)=b6(a6).
因为T11(S11)=b1+b11(a1+a11)=2b6(2a6)=4×11-3(2×11-3)=41(19),
所以b5+b7(a9)+b8+b4(a3)=41(19).
[答案] 41(19)
4.(必修5 P45练习T3,P47习题2.3B组T4联合改编)集合M={m|m=2n,n∈N*}共有n个元素,其和为Sn,则(100)Si(1)=________.
[解析] 由m=2n(n∈N*)知集合M中的元素从小到大构成首项a1=2,公差d=2的等差数列.
所以Sn=n×2+2(n(n-1))×2=n2+n=n(n+1).
所以(100)Si(1)=1×2(1)+2×3(1)+…+100×101(1)
=1-2(1)+2(1)-3(1)+…+100(1)-101(1)=1-101(1)=101(100).
[答案] 101(100)
5.(必修5 P44例2改编)等差数列{an}的前n项之和为Sn,且a5=28,S10=310.
(1)求数列{an}的通项公式;
(2)记函数f(n)=Sn,(n∈N*),A(n,f(n)),B(n+1,f(n+1)),C(n+2,f(n+2))是函数f(n)上的三点,求证△ABC的面积为定值,并求出其定值.
[解] (1)因为a5=28,S10=310.
所以d=310,(10×9)
解得a1=4,d=6.
所以an=4+(n-1)×6=6n-2.
(2)由(1)知Sn=4n+2(n(n-1))×6=3n2+n.
所以A,B,C的坐标分别为(n,3n2+n),(n+1,3(n+1)2+(n+1)),(n+2,3(n+2)2+n+2).
所以△ABC的面积S=2(1)[(3n2+n)+3(n+2)2+(n+2)]×2-2(1)[(3n2+n)+3(n+1)2+(n+1)]×1-12[3(n+1)2+(n+1)+3(n+2)2+(n+2)]×1
=(6n2+14n+14)-(3n2+4n+2)-(3n2+10n+9)
=3.
即△ABC的面积为定值3.
高中数学数列(高考题)
7.设Sn是等差数列{an}的前n项和,若a5/a3=5/9,则S9/S5=多少?
∵{an}是等差数列
∴S9=(a1+a9)*9/2=2*9a5/2=9a5
S5=(a1+a5)*5/2=2a3*5/2=5a3
∴S9/S5=9a5/(5a3)=9/5*5/9=1
8.∵{an}等差数列的前n项之和,
∴ S4=4a1+6d , S8=8a1+8*7d/2=8a1+28d
∵ S4/S8=1/3
∴3(4a1+6d)=8a1+28d
∴ 2a1=5d
∴S8/S16=(8a1+28d)/(16a1+120d)
=48d/(160d)=3/10
法2:
∵ S8=3S4 ,
∴ S8-S4=2S4 ,
S12-S8=3S4 ,
S16-S12=4S4
∴S16-S4=9S4
∴S16=10S4
∴S8/S16=3/10
9.(04全国卷一文17)等差数列{an}的前n项和记为Sn已知a10=30,a20=50.
(1)求通项an;
∵ 等差数列{an} a10=30,a20=50.
∴a1+9d=30 ,a1+19d=50
∴d=2,a1=12
∴an=12+2(n-1)=2n+10
(2)
∵Sn=242
∴(12+2n+10)n/2=242
∴(n+11)n=22×11
∴n=11
怎么求等比数列,和等差数列的和
A<2>-A<1>=c-1-1>0所以c>2
令t=A<n
1>=A<n>解得t=(c±√(c^2-4))/2求出两个可能的收敛点只需证明(c-√(c^2-4))/2<A<n><=(c
√(c^2-4))/2即数列取值在两个可能收敛点之间
1.用数学归纳法,当(c-√(c^2-4))/2<A<n>时A<n
1>-(c-√(c^2-4))/2=(c
√(c^2-4))/2-1/A<n>>0所以A<n>>(c-√(c^2-4))/2>0
2.A<n
1>-A<n>=-A<n>
A<n-1>=(A<n>-A<n-1>)/(A<n>A<n-1>)A<2>-A<1>>0,推出A<3>-A<2>>0,……,A<n
1>-A<n>>0
3.当A<n><(c
√(c^2-4))/2时A<n
1>-(c
√(c^2-4))/2=(c-√(c^2-4))/2-1/A<n><0所以A<n><(c
√(c^2-4))/2
要满足条件,已知c>2,A<n><A<n
1>自然满足要使A<n
1><3,又A<n><(c
√(c^2-4))/2(c
√(c^2-4))/2<3解得2<c<10/3
高考在数列{An}中,A1=1,An=2[A(n-1)-1]+n(n大于等于2,且为正整数) 证明:数列{An+n}是等比数列.
以下为 等差与等比数列和数列求和的基本方法和技巧 文本内容,如需完整资源请下载。
高考专题复习三——等差与等比数列
等差与等比数列是最重要且应用广泛的有通项公式的数列,在高考中占有重要地位,成为每年必考的重点内容,这部分内容的基础知识有:等差、等比数列的定义及通项公式,前几项和公式以及等差、等比数列的性质,在解决有关等差,等比数列问题时,要注意运用方程的思想和函数思想以及整体的观点,培养分析问题与解决问题的能力。
考纲要求:掌握等差数列与等比数列的概念,通项公式,前几项和公式并能运用知识解决一些问题。
一、知识结构与要点:
等差、等比数列的性质推广
定义
通项 —等差中项 abc成等差
基本概念 推广
前n项和
等差数列
当d>0(<0) 时{为递增(减)数列
当d=0时为常数
基本性质 与首末两端等距离的项之和均相等
中共成等差则也成等
定义:
通项 等比中项:a b c成等比数列
基本概念 推广
前n项和
等比数列
与首末两端等距离的两项之积相等
成等比,若 成等差 则 成等比
基本性质 当 或 时 {为递增数列
当 或 时 {为递减数列
当 q<0时 {为摆动数列
当 q=1时 {为常数数列
二、典型例题
例1.在等差数列中 求
解法一
那么
解法二:由
点评:在等差数列中,由条件不能具体求出和d,但可以求出 与d的组合式,而所求的量往往可以用这个组合式表示,那么用“整体代值”的方法将值求出
(2)利用:将所求量化为已知量也是“整体代值”的思想,它比用和 d表示更简捷。
例2.等差数列前m项和为30,前2m项和为100,则它的前3m项和为
解法一 用方程的思想,由条件知
也成等数列
由②Χ2-①得
代入
解:在等差数列中由性质知 成等差数列
解法三 等差数列中
即为以为首项公差为的等差数列 依题意条件知
成等差
点评:三种解法从不同角度反映等差数列所具有的特性,运用方程的方法、性质或构造新的等差数列都是数列中解决问题的常用方法且有价值,对解决某些问题极为方便。
例3 在等比数列中 求
分析:在等比数列中对于 五个量一般“知三求二”其中首项5元比是关键,
因此
解法一
又
则
解法二: 而
代入 中得
故
点评:根据等比数列定义运用方程的方法解决数列问题常用解法二更为简捷。
例4.在等差数列 中 等比数列中
则
解:
点评:此题也可以把和d 看成两个未知数,通过 列方程,联立解之d= 。再求出 但计算较繁,运用计算较为方便。
例5.设等差数列 前n项和为已知
(1)求公差d的范围 (2)指出中哪一个值最大,并说明理由
解:(1)由题义有
由 则代入上式有
(2d<0 所以最小时最大 当时
所以 当n=6 时最小 故 最大
点评:本题解法体现了函数思想在处理数列问题中的运用,判断数列随N增大而变化规律的方法与判断函数增减性的方法相同。
例6 已知a>0 数列是首项5元比都为a的等比数列,(n如果数列中每一项总小于它后面的项,求a的取值范围。
解:由已知有 所以
因此由题意 对任意 成立 即
即 对任总成立,由 知
那么 由 a>0 知 或
即(Ⅰ) 或 (Ⅱ)
由Ⅰ知 a>1 中Ⅱ 为递增的函数 所以
故a的取值范围为或 a>1
点评:这是道数列与不等式综合的题目,既含有字母分类讨论又要运用极限的思想和函数最值的观点来解决问题,同时还要判断函数 的单调性,具有一定的综合性。
高考专题复习三——数列求和的基本方法和技巧
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法.
等差数列求和公式:
2、等比数列求和公式:
3、
4、
5、
[例1] 已知,求的前n项和.
解:由 由等比数列求和公式得
(利用常用公式)===1-
[例2] 设Sn=1+2+3+…+n,n∈N*,求的最大值.
解:由等差数列求和公式得 , (利用常用公式)
∴ ===
∴当,即n=8
二、错位相减法求和
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前n项和,其中{ an }、{ bn }分别是等差数列和等比数列.
[例3] 求和:………………①
解:由题可知,{}的通项是等差数列{2n-1}{}的通项之积
设……. ②(设制错位)
①-②得 (错位相减)
再利用等比数列的求和公式得:
∴
[例4] 求数列前n项的和.
解:由题可知,{}的通项是等差数列{2n}的通项与等比数列{}的通项之积
设………………①
………………②(设制错位)
①-②得(错位相减)
∴
三、反序相加法求和
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个.
[例5] 求证:
证明: 设………①
把①式右边倒转过来得
(反序)
又由可得 ……..②
①+②得 (反序相加)∴
[例6] 求的值
解:设…①
将①式右边反序得
…②(反序)
又因为 ①+②得(反序相加)
=89 ∴ S=44.5
四、分组法求和
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
[例7] 求数列的前n项和:,…
解:设 将其每一项拆开再重新组合得
(分组)
当a=1=(分组求和)
当时,=
[例8] 求数列{n(n+1)(2n+1)}的前n项和.
解:设 ∴=
将其每一项拆开再重新组合得
Sn=(分组)==(分组求和)=
五、裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1) (2)
(3) (4)
(5)
(6)
[例9] 求数列的前n项和.
解:设 (裂项)
则 (裂项求和)
==
[例10] 在数列{an}中,,又,求数列{bn}的前n项的和.
解:∵ ∴ (裂项)
∴ 数列{bn}的前n项和
(裂项求和)==
[例11] 求证:
解:设
由 (裂项)
∴ (裂项求和)
=
=== ∴原等式成立
六、合并法求和
针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求Sn.
[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.
解:设Sn= cos1 cos2°+ cos3°+···+ cos178°+ cos179°
∵(找特殊性质项)
∴Sn=cos1°+cos179°)+(cos2°+cos178°)+(cos3°+cos177°)+···+(cos89°+cos91°)+cos90°(合并求和)=0
[例13] 数列{an}:,求S2002.
解:设S2002=
由可得
……
∵(找特殊性质项)
∴S2002= (合并求和)
=
=
=
=5
[例14] 在各项均为正数的等比数列中,若的值.
解:设
由等比数列的性质 (找特殊性质项)
和对数的运算性质 得
(合并求和)
=
=
=10
七、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.
[例15] 求之和.
解:由于 (找通项及特征)
∴
=(分组求和)
===
[例16]已知数列{an}:的值.
解:∵ (找通项及特征)
=(设制分组)
= (裂项)
∴ (分组、裂项求和)
==
高考专题复习练习三——等差与等比数列
1(北京)已知数列中,,为数列的前n项和,且与的一个等比中项为,则的值为( )
(A) (B) (C) (D)1
2(黄冈)在等差数列{an}中,a1 + a2 + … + a50 = 200,a51 + a52 + … + a100 = 2700,则a1等于( )
(A)-1221 (B)-21.5 (C)-20.5 (D)-20
3(合肥)数列满足 若,则( )
(A) (B) (C) (D)
4(北京)在数列中,则此数列前4项之和为中, ,公差d<0,前n项和是,则有( )
(A) (B) (C) (D)
6(北京)等差数列{a n}中,已知,a2+a5=4,a n =33,则n为( )
A、48 B、49 C、50 D、51
满足是首项为1,公比为2的等比数列,则_________________。
8、已知数,则的值依次是_________________,=___________________.
9、若数列满足,且,则的值为______________。
10、(天津)设数列是等差数列,且a2a4+a4a6+a6a2=1,,则a10 =____________.
11、在等差数列{an}中,a1=,第10项开始比1大,则公差d的取值范围是___________.
12、(本题满分14分)
已知函数f (x)=-3x+3,x∈
(1)求f (x)的反函数y=g (x);
(2)在数列{a n}中,a1=1,a2=g (a1),a3=g (a2) ,…an=g (an-1)
求证:数列是等比数列. (3)解关于n的不等式:12分)
已知数列的首项(a是常数),().
(Ⅰ)是否可能是等差数列.若可能,求出的通项公式;若不可能,说明理由;
(Ⅱ)设,(),为数列的前n项和,且是等比数列,求实数a、b满足的条件.
高考专题复习练习三——等差与等比数列答案
1.D 2.C 3.B 4.A 5.A 6.C 7. 8. 1 9.102 10.
11.
高考数列大题求解
证明:两边同时加n得:An+n=2A(n-1)-2+2n
即An+n=2A(n-1)+2(n-1)
所以得(An+n)/[A(n-1)+(n-1)]=2
所以{An+n}是以2为首项,2为公比的等比数列
(1)an+n=2的n次幂
an=2的n次幂-n
(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)
=2(2的n次-1)-1/2·n(1+n)
高中数学合集百度网盘下载
链接:提取码:1234
简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。