您现在的位置是: 首页 > 教育资讯 教育资讯

数学高考2卷答案,高考数学二卷答案解析2020

tamoadmin 2024-06-22 人已围观

简介1.求2008年江苏高考数学试卷(带答案的)2.求08年江苏数学高考试卷 word 版(带答案)3.2006年高考理科数学试题最后一题及答案详解(全国卷2)4.求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目5.福建省近几年高考卷 数学今天小编辑给各位分享2022数学高考试卷的知识,其中也会对江苏2022数学高考试卷分析解答,如果能解决你想了解的问题,关注本站

1.求2008年江苏高考数学试卷(带答案的)

2.求08年江苏数学高考试卷 word 版(带答案)

3.2006年高考理科数学试题最后一题及答案详解(全国卷2)

4.求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目

5.福建省近几年高考卷 数学

数学高考2卷答案,高考数学二卷答案解析2020

今天小编辑给各位分享2022数学高考试卷的知识,其中也会对江苏2022数学高考试卷分析解答,如果能解决你想了解的问题,关注本站哦。

你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?

今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。

2022全国新高考1卷数学难吗?压轴题有何立意?

对于这个高考的试卷题是非常的难的,因为这次的高考的试卷的题目基本上都是来自于那些非常偏非常难的题,那么正是为了测试这些学生的水平而设立的题目,因为正式的考试是为了选拔这些学生的一次考试,那么这仍然是选择了那些非常偏的题,那么一般来说这些学生在上课的时候都是不会去做那种非常偏非常难的题,那么出现了这种非常难非常偏的题的话,那么这些学生就会遇到了困难,至于压轴题的话,压轴题就是更难的,一般压轴题都需要考验一个学生的逻辑思维能力,去做这个题,那么才能够把这个题目给做出来的

选拔性考试

一般来说这个高考的数学试题呢,那么都是以选拔这些学生的一种难度来出的那么自然人是非常的难的,特别考验这些学生的逻辑思维能力,以运用这个知识的这个能力,并不像填空题一样,只要把这个答案填进去就OK了那么一般来说这数学试题呢,都是很考验这些学生的数学逻辑思维,而运用这个知识的能力的,而且是需要灵活的运用这个知识去写这些题目的,所以说就在这个高考的数学试题是非常的难的

压轴题的意义

一般来说呢,压轴题更是最难的一道题,毕竟是压轴的嘛,所以说难度是升了一个阶段的,那么也是很正常,毕竟一张试卷的压轴题,无论是什么试卷的压轴题那么都是非常的难审正常的事情,因为到了压轴题之后那么一般都是考验学生的灵活运用知识的逻辑思维能力,基本上都要运用上去,那么才能够把这道题给做出来,而且所需要的知识量也是非常的大的

总的来说那么高考数学试卷的题目都是非常的难,是考验这些学生灵活的运用知识的一个题目,那么需要这些学生非常的努力的去运用自己所学的知识,不仅仅所需要的知识,还需要自己灵活运用知识的能力,那么才能够将这些题目做出来

2022年天津高考数学试卷及答案

为了帮助大家全面了解2022年天津高考数学卷,大家就能知道2022年天津高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年天津高考数学试卷及答案,以供大家参考!

2022年天津高考数学试卷

截止目前,2022年天津高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学试卷,供大家对照、估分、模拟使用。

2022年天津高考数学答案解析

截止目前,2022年天津高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学答案解析,供大家对照、估分、模拟使用。

高考录取规则及志愿设置

志愿设置

提前艺术、体育本科设置1个第一院校志愿和1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;

提前一批本科和提前二批本科批次分别设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

本科面向贫困地区专项计划第一、二批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;

免费医学定向生、农科生院校设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。

第一批本科批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;

第一批本科特殊类型招生分公示类和非公示类各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。

第一批本科艺术本科院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

第二批本科类批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

第二批本科艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。

第二批本科C类艺术、体育类院校分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

第二批本科特殊类型招生各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。

高本贯通批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

高本贯通艺术类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。

提前专科批次设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

专科批次设置9个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H、I,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

专科批次艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。

录取原则

高校招生实行两种投档模式。

平行志愿投档模式:根据“考生之间,分数优先;考生志愿,遵循顺序”的投档原则,先分科类将考生按成绩从高分到低分排序,再按照顺序对考生逐个进行投档;对某考生投档时,遵循该考生填报的多个平行志愿院校依次检索判断,当检索到该考生填报的某个院校有调档缺额时,即将该考生档案投放到该院校。

实行平行志愿的批次和科类:本科面向贫困地区专项计划批、第一批本科、第二批本科、高本贯通批、专科批的文史和理工两个科类。

平行志愿投档模式的考生成绩排序规则是:

1)先按考生特征总分从高到低排序;

2)考生总分相同时,再按单科成绩依次从高到低排序。

单科成绩排序的科目顺序是:

文史类:①语文;②数学;③文科综合

理工类:①数学;②语文;③理科综合

3)上年被录取后未报到考生将排在同分数的最后,考生总分相同时,按单科成绩依次从高到低排序。

非平行志愿投档模式:根据“志愿优先”的投档原则,先投第一志愿,当院校第一志愿生源不足时,再依次投第二志愿、第三志愿。

2022年天津高考数学试卷及答案相关文章:

★2022年高考数学答题技巧

★2022全国各省市高考使用全国几卷

★2022全国高考试卷分几类

★2022年北京高考数学试卷

★2022高考数学卷分数分布一览

★2022年高考数学必考知识点总结最新

★高三数学教学2021工作总结模板

★2022年高考时间及考试科目安排表公布

★2022年天津高考一分一段预览表

★2022天津高考一分一段重磅揭晓

2022新高考全国卷的数学题是什么难度?有多少基础分?

随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。

一、2022年新高考全国卷的数学题处于中上等难度

根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分

一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结

总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。

2022年浙江高考数学试卷

为了帮助大家全面了解2022年浙江高考数学卷,这样,大家就能知道2022年浙江高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年浙江高考数学试卷及答案,以供大家参考!

2022年浙江高考数学试卷

截止目前,2022年浙江高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学试卷,供大家对照、估分、模拟使用。

2022年浙江高考数学答案解析

截止目前,2022年浙江高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学答案解析,供大家对照、估分、模拟使用。

高考填报志愿的技巧

各批次志愿填报注意落差

“平行志愿”不是“平等志愿”,也不是“平行录取”。考生填报的平行志愿有自然顺序,并不是只要成绩达到所填报的4个平行志愿院校录取条件,就可能会被4所院校同时录取。实际上,只要考生档案投到一所志愿高校后,就不会到其他高校,对每个考生而言投档录取机会只有一次。

注重学校录取平均分

考生在填报志愿时,首先要了解自己在学校、区所处的位次,这个是最关键的参考因素。可根据自己一模、二模的成绩,看看自己在区、学校的排名,并排一排自己在全市的位次所在。咨询老师往年该名次段考生的去向,掌握自己可能被录取的学校范围,然后再根据个人的兴趣爱好以及家庭背景等因素,在这个范围内做选择。

避免被调剂慎写“不服从调剂”

选学校退一步,选专业进一步高考填报志愿中,究竟是选学校,还是选专业,是考生和家长最难把握的问题。尤其是对各批次的中分段、低分段考生来说,这一难题最为显现。选好的学校,有可能要舍弃好专业:想填个自己喜欢的专业,学校上就得有所顾忌,因为好学校的好专业肯定是要“挤破头”的。

高考先填志愿还是先出分数

现在都是先高考完知道分数之后再填志愿。高考考生填志愿时所报考的学校层次要根据考生所在省份的分数线决定,所以现在一般都是先出成绩再填相关志愿。

在查到高考分数之后,就可以提前预估自己分数可以报的学校和专业,现在是填报的平行志愿,考生可以一次性填报多所高校,多个专业,按照惯例,填报志愿一般是在出分后,在这之前,考生们要确定好自己的意向学校和专业,认真考虑,不要盲目或者瞎填报。

填报高考志愿时,一定要看清本省志愿及录取方式,是平行志愿还是顺序志愿。现在大部分地区都采取平行志愿模式录取,但是也有部分地区或者部分录取批次专仍然采取顺序志愿录取,二者录取原理是不同的,所以在报考时填写的院校专业顺序也要区别对待。

2022年浙江高考数学试卷相关文章:

★2022年高考数学必考知识点总结最新

★2022高考数学选择题答题方法

★高考数学选择题解题方法2022

★2022高考数学必考知识点考点总结大全

★2022年高考数学考前冲刺指导

★2022年河北高考时间表及注意事项

★2022年数学高考知识点

★2022高考数学必考知识点归纳最新

★2022年北京高考数学试卷

★2022年高考数学前十天如何复习最有效

2022新高考全国一卷数学试卷及答案解析

为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!

2022新高考全国一卷数学试卷

2022新高考全国一卷数学试卷答案解析参考

高考怎样填志愿

1、选择哪个学校

填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。

2、选择什么专业

选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。

3、提前了解各个学校的情况

在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。

服从调剂意味着什么

1、增加了一次录取机会

在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。

如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。

2、服从调剂,不一定会被调剂到其他专业

从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。

如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。

3、专业调剂会调到哪里去?

专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。

高考之后可以去哪玩

1、云南

云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。

云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。

2、杭州

“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼

3、重庆

说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。

4、厦门

厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜

5、西藏

西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。

6、九寨沟

九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。

7、桂林

“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。

2022新高考全国一卷数学试卷及答案解析相关文章:

★2022高考北京卷数学真题及答案解析

★2022高考全国乙卷试题及答案

★2022全国甲卷高考数学文科试卷及答案解析

★2022高考甲卷数学真题试卷及答案

★2022年北京高考数学试卷

★2022高考全国甲卷数学试题及答案

★2022全国新高考I卷语文试题及答案

★2022全国新高考Ⅰ卷英语试题及答案解析

★2022年全国新高考II卷数学真题及答案

★2022北京卷高考文科数学试题及答案解析

求2008年江苏高考数学试卷(带答案的)

多年来北京卷会在最后一题做大胆的创新。具体来说,北京卷的最后一题并不执着于具体的知识或 方法 ,而是通过全新的背景,考查一般意义下的数学素养。下面是我为大家收集的关于北京卷高考数学试卷及答案解析2022年。希望可以帮助大家。

北京卷高考数学试卷

北京卷高考数学答案解析

高中数学知识汇总

必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2

选修1--1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)

理科:选修2—1、2—2、2—3

选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)

选修2--2:1、导数与微积分2、推理证明:一般不考3、复数

选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

高考的知识板块

集合与简单逻辑:5分或不考

函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)

平面向量与解三角形

立体几何:22分左右

不等式:(线性规则)5分必考

数列:17分 (一道大题+一道选择或填空)易和函数结合命题

平面解析几何:(30分左右)

计算原理:10分左右

概率统计:12分----17分

复数:5分

推理证明

一般高考大题分布

1、17题:三角函数

2、18、19、20 三题:立体几何 、概率 、数列

3、21、22 题:函数、圆锥曲线

成绩不理想一般是以下几种情况:

做题不细心,(会做,做不对)

基础知识没有掌握

解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)

心理素质不好

总之学__数学一定要掌握科学的学__方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳 总结

北京卷高考数学试卷及答案解析2022年相关 文章 :

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022年全国新高考II卷数学真题及答案

★ 2022高考全国乙卷试题及答案(理科)

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022年新高考Ⅱ卷数学试题及答案解析

★ 2022年新高考Ⅰ卷数学真题试卷及答案

★ 2022高考甲卷数学真题试卷及答案

★ 2022高考全国甲卷文综试题及答案一览

★ 2022高考全国甲卷数学试题及答案

★ 全国新高考II卷2022英语试题及答案解析

求08年江苏数学高考试卷 word 版(带答案)

绝密★启用前

2008年普通高等学校招生全国统一考试(江苏卷)

数 学

本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的

准考证号、姓名,并将条形码粘贴在指定位置上.

2.选择题答案使用2B

铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择

题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.

4.保持卡面清洁,不折叠,不破损.

5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.

参考公式:

样本数据 , , , 的标准差

其中 为样本平均数

柱体体积公式

其中 为底面积, 为高

一、填空题:本大题共1小题,每小题5分,共70分.

1. 的最小正周期为 ,其中 ,则 = ▲ .

本小题考查三角函数的周期公式.

10

2.一个骰子连续投2 次,点数和为4 的概率 ▲ .

本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故

3. 表示为 ,则 = ▲ .

本小题考查复数的除法运算.∵ ,∴ =0, =1,因此

1

4.A= ,则A Z 的元素的个数 ▲ .

本小题考查集合的运算和解一元二次不等式.由 得 ,∵Δ<0,∴集合A 为 ,因此A Z 的元素不存在.

0

5. , 的夹角为 , , 则 ▲ .

本小题考查向量的线性运算.

= , 7

7

6.在平面直角坐标系 中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .

本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.

7.算法与统计的题目

8.直线 是曲线 的一条切线,则实数b= ▲ .

本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.

ln2-1

9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程: ,请你求OF的方程:

( ▲ ) .

本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.

10.将全体正整数排成一个三角形数阵:

1

2 3

4 5 6

7 8 9 10

. . . . . . .

按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .

本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 .

11.已知 , ,则 的最小值 ▲ .

本小题考查二元基本不等式的运用.由 得 ,代入 得

,当且仅当 =3 时取“=”.

3

12.在平面直角坐标系中,椭圆 1( 0)的焦距为2,以O为圆心, 为半径的圆,过点 作圆的两切线互相垂直,则离心率 = ▲ .

设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故 ,解得 .

13.若AB=2, AC= BC ,则 的最大值 ▲ . ?

本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,

根据面积公式得 = ,根据余弦定理得

,代入上式得

=

由三角形三边关系有 解得 ,

故当 时取得 最大值

14. 对于 总有 ≥0 成立,则 = ▲ .

本小题考查函数单调性的综合运用.若x=0,则不论 取何值, ≥0显然成立;当x>0 即 时, ≥0可化为,

设 ,则 , 所以 在区间 上单调递增,在区间 上单调递减,因此 ,从而 ≥4;

当x<0 即 时, ≥0可化为 ,

在区间 上单调递增,因此 ,从而 ≤4,综上 =4

4

二、解答题:解答应写出文字说明,证明过程或演算步骤.

15.如图,在平面直角坐标系 中,以 轴为始边做两个锐角 , ,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为 .

(Ⅰ)求tan( )的值;

(Ⅱ)求 的值.

本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.

由条件的 ,因为 , 为锐角,所以 =

因此

(Ⅰ)tan( )=

(Ⅱ) ,所以

∵ 为锐角,∴ ,∴ =

16.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,

求证:(Ⅰ)直线EF ‖面ACD ;

(Ⅱ)面EFC⊥面BCD .

本小题考查空间直线与平面、平面与平面的位置关系的判定.

(Ⅰ)∵ E,F 分别是AB,BD 的中点,

∴EF 是△ABD 的中位线,∴EF‖AD,

∵EF 面ACD ,AD 面ACD ,∴直线EF‖面ACD .

(Ⅱ)∵ AD⊥BD ,EF‖AD,∴ EF⊥BD.

∵CB=CD, F 是BD的中点,∴CF⊥BD.

又EF CF=F,∴BD⊥面EFC.∵BD 面BCD,∴面EFC⊥面BCD .

17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,

CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为 km.

(Ⅰ)按下列要求写出函数关系式:

①设∠BAO= (rad),将 表示成 的函数关系式;

②设OP (km) ,将 表示成x 的函数关系式.

(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.

本小题主要考查函数最值的应用.

(Ⅰ)①由条件知PQ 垂直平分AB,若∠BAO= (rad) ,则 , 故

,又OP= 10-10ta ,

所以 ,

所求函数关系式为

②若OP= (km) ,则OQ=10- ,所以OA =OB=

所求函数关系式为

(Ⅱ)选择函数模型①,

令 0 得sin ,因为 ,所以 = ,

当 时, , 是 的减函数;当 时, , 是 的增函数,所以当 = 时, 。这时点P 位于线段AB 的中垂线上,且距离AB 边

km处。

18.设平面直角坐标系 中,设二次函数 的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:

(Ⅰ)求实数b 的取值范围;

(Ⅱ)求圆C 的方程;

(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.

本小题主要考查二次函数图象与性质、圆的方程的求法.

(Ⅰ)令 =0,得抛物线与 轴交点是(0,b);

令 ,由题意b≠0 且Δ>0,解得b<1 且b≠0.

(Ⅱ)设所求圆的一般方程为

令 =0 得 这与 =0 是同一个方程,故D=2,F= .

令 =0 得 =0,此方程有一个根为b,代入得出E=―b―1.

所以圆C 的方程为 .

(Ⅲ)圆C 必过定点(0,1)和(-2,1).

证明如下:将(0,1)代入圆C 的方程,得左边=0 +1 +2×0-(b+1)+b=0,右边=0,

所以圆C 必过定点(0,1).

同理可证圆C 必过定点(-2,1).

19.(Ⅰ)设 是各项均不为零的等差数列( ),且公差 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当n =4时,求 的数值;②求 的所有可能值;

(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列 ,其中任意三项(按原来顺序)都不能组成等比数列.

本小题主要考查等差数列与等比数列的综合运用.

(Ⅰ)①当n=4 时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.

若删去 ,则有 即

化简得 =0,因为 ≠0,所以 =4 ;

若删去 ,则有 ,即 ,故得 =1.

综上 =1或-4.

②当n=5 时, 中同样不可能删去首项或末项.

若删去 ,则有 = ,即 .故得 =6 ;

若删去 ,则 = ,即 .

化简得3 =0,因为d≠0,所以也不能删去 ;

若删去 ,则有 = ,即 .故得 = 2 .

当n≥6 时,不存在这样的等差数列.事实上,在数列 , , ,…, , , 中,

由于不能删去首项或末项,若删去 ,则必有 = ,这与d≠0 矛盾;同样若删

去 也有 = ,这与d≠0 矛盾;若删去 ,…, 中任意一个,则必有

= ,这与d≠0 矛盾.

综上所述,n∈.

(Ⅱ)略

20.若 , , 为常数,

(Ⅰ)求 对所有实数成立的充要条件(用 表示);

(Ⅱ)设 为两实数, 且 ,若

求证: 在区间 上的单调增区间的长度和为 (闭区间 的长度定义为 ).

本小题考查充要条件、指数函数与绝对值函数、不等式的综合运用.

(Ⅰ) 恒成立

(*)

因为

所以,故只需 (*)恒成立

综上所述, 对所有实数成立的充要条件是:

(Ⅱ)1°如果 ,则的图象关于直线 对称.因为 ,所以区间 关于直线 对称.

因为减区间为 ,增区间为 ,所以单调增区间的长度和为

2°如果 .

(1)当 时. ,

当 , 因为 ,所以 ,

故 =

当 , 因为 ,所以

故 =

因为 ,所以 ,所以 即

当 时,令 ,则 ,所以 ,

当 时, ,所以 =

时, ,所以 =

在区间 上的单调增区间的长度和

=

(2)当 时. ,

当 , 因为 ,所以 ,

故 =

当 , 因为 ,所以

故 =

因为 ,所以 ,所以

当 时,令 ,则 ,所以 ,

当 时, ,所以 =

时, ,所以 =

在区间 上的单调增区间的长度和

=

综上得 在区间 上的单调增区间的长度和为

2006年高考理科数学试题最后一题及答案详解(全国卷2)

绝密★启用前

2008年普通高等学校招生全国统一考试(江苏卷)

数 学

本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的

准考证号、姓名,并将条形码粘贴在指定位置上.

2.选择题答案使用2B

铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择

题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.

4.保持卡面清洁,不折叠,不破损.

5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.

参考公式:

样本数据 , , , 的标准差

其中 为样本平均数

柱体体积公式

其中 为底面积, 为高

一、填空题:本大题共1小题,每小题5分,共70分.

1. 的最小正周期为 ,其中 ,则 = ▲ .

解析本小题考查三角函数的周期公式.

答案10

2.一个骰子连续投2 次,点数和为4 的概率 ▲ .

解析本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故

答案

3. 表示为 ,则 = ▲ .

解析本小题考查复数的除法运算.∵ ,∴ =0, =1,因此

答案1

4.A= ,则A Z 的元素的个数 ▲ .

解析本小题考查集合的运算和解一元二次不等式.由 得 ,∵Δ<0,∴集合A 为 ,因此A Z 的元素不存在.

答案0

5. , 的夹角为 , , 则 ▲ .

解析本小题考查向量的线性运算.

= , 7

答案7

6.在平面直角坐标系 中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .

解析本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.

答案

7.算法与统计的题目

8.直线 是曲线 的一条切线,则实数b= ▲ .

解析本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.

答案ln2-1

9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程: ,请你求OF的方程:

( ▲ ) .

解析本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.

答案

10.将全体正整数排成一个三角形数阵:

1

2 3

4 5 6

7 8 9 10

. . . . . . .

按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .

解析本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 .

答案

11.已知 , ,则 的最小值 ▲ .

解析本小题考查二元基本不等式的运用.由 得 ,代入 得

,当且仅当 =3 时取“=”.

答案3

12.在平面直角坐标系中,椭圆 1( 0)的焦距为2,以O为圆心, 为半径的圆,过点 作圆的两切线互相垂直,则离心率 = ▲ .

解析设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故 ,解得 .

答案

13.若AB=2, AC= BC ,则 的最大值 ▲ . ?

解析本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,

根据面积公式得 = ,根据余弦定理得

,代入上式得

=

由三角形三边关系有 解得 ,

故当 时取得 最大值

答案

14. 对于 总有 ≥0 成立,则 = ▲ .

解析本小题考查函数单调性的综合运用.若x=0,则不论 取何值, ≥0显然成立;当x>0 即 时, ≥0可化为,

设 ,则 , 所以 在区间 上单调递增,在区间 上单调递减,因此 ,从而 ≥4;

当x<0 即 时, ≥0可化为 ,

在区间 上单调递增,因此 ,从而 ≤4,综上 =4

答案4

二、解答题:解答应写出文字说明,证明过程或演算步骤.

15.如图,在平面直角坐标系 中,以 轴为始边做两个锐角 , ,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为 .

(Ⅰ)求tan( )的值;

(Ⅱ)求 的值.

解析本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.

由条件的 ,因为 , 为锐角,所以 =

因此

(Ⅰ)tan( )=

(Ⅱ) ,所以

∵ 为锐角,∴ ,∴ =

16.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,

求证:(Ⅰ)直线EF ‖面ACD ;

(Ⅱ)面EFC⊥面BCD .

解析本小题考查空间直线与平面、平面与平面的位置关系的判定.

(Ⅰ)∵ E,F 分别是AB,BD 的中点,

∴EF 是△ABD 的中位线,∴EF‖AD,

∵EF 面ACD ,AD 面ACD ,∴直线EF‖面ACD .

(Ⅱ)∵ AD⊥BD ,EF‖AD,∴ EF⊥BD.

∵CB=CD, F 是BD的中点,∴CF⊥BD.

又EF CF=F,∴BD⊥面EFC.∵BD 面BCD,∴面EFC⊥面BCD .

17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,

CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为 km.

(Ⅰ)按下列要求写出函数关系式:

①设∠BAO= (rad),将 表示成 的函数关系式;

②设OP (km) ,将 表示成x 的函数关系式.

(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.

解析本小题主要考查函数最值的应用.

(Ⅰ)①由条件知PQ 垂直平分AB,若∠BAO= (rad) ,则 , 故

,又OP= 10-10ta ,

所以 ,

所求函数关系式为

②若OP= (km) ,则OQ=10- ,所以OA =OB=

所求函数关系式为

(Ⅱ)选择函数模型①,

令 0 得sin ,因为 ,所以 = ,

当 时, , 是 的减函数;当 时, , 是 的增函数,所以当 = 时, 。这时点P 位于线段AB 的中垂线上,且距离AB 边

km处。

18.设平面直角坐标系 中,设二次函数 的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:

(Ⅰ)求实数b 的取值范围;

(Ⅱ)求圆C 的方程;

(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.

解析本小题主要考查二次函数图象与性质、圆的方程的求法.

(Ⅰ)令 =0,得抛物线与 轴交点是(0,b);

令 ,由题意b≠0 且Δ>0,解得b<1 且b≠0.

(Ⅱ)设所求圆的一般方程为

令 =0 得 这与 =0 是同一个方程,故D=2,F= .

令 =0 得 =0,此方程有一个根为b,代入得出E=―b―1.

所以圆C 的方程为 .

(Ⅲ)圆C 必过定点(0,1)和(-2,1).

证明如下:将(0,1)代入圆C 的方程,得左边=0 +1 +2×0-(b+1)+b=0,右边=0,

所以圆C 必过定点(0,1).

同理可证圆C 必过定点(-2,1).

19.(Ⅰ)设 是各项均不为零的等差数列( ),且公差 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当n =4时,求 的数值;②求 的所有可能值;

(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列 ,其中任意三项(按原来顺序)都不能组成等比数列.

解析本小题主要考查等差数列与等比数列的综合运用.

(Ⅰ)①当n=4 时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.

若删去 ,则有 即

化简得 =0,因为 ≠0,所以 =4 ;

若删去 ,则有 ,即 ,故得 =1.

综上 =1或-4.

②当n=5 时, 中同样不可能删去首项或末项.

若删去 ,则有 = ,即 .故得 =6 ;

若删去 ,则 = ,即 .

化简得3 =0,因为d≠0,所以也不能删去 ;

若删去 ,则有 = ,即 .故得 = 2 .

当n≥6 时,不存在这样的等差数列.事实上,在数列 , , ,…, , , 中,

由于不能删去首项或末项,若删去 ,则必有 = ,这与d≠0 矛盾;同样若删

去 也有 = ,这与d≠0 矛盾;若删去 ,…, 中任意一个,则必有

= ,这与d≠0 矛盾.

综上所述,n∈{4,5}.

(Ⅱ)略

20.若 , , 为常数,

(Ⅰ)求 对所有实数成立的充要条件(用 表示);

(Ⅱ)设 为两实数, 且 ,若

求证: 在区间 上的单调增区间的长度和为 (闭区间 的长度定义为 ).

解析本小题考查充要条件、指数函数与绝对值函数、不等式的综合运用.

(Ⅰ) 恒成立

(*)

因为

所以,故只需 (*)恒成立

综上所述, 对所有实数成立的充要条件是:

(Ⅱ)1°如果 ,则的图象关于直线 对称.因为 ,所以区间 关于直线 对称.

因为减区间为 ,增区间为 ,所以单调增区间的长度和为

2°如果 .

(1)当 时. ,

当 , 因为 ,所以 ,

故 =

当 , 因为 ,所以

故 =

因为 ,所以 ,所以 即

当 时,令 ,则 ,所以 ,

当 时, ,所以 =

时, ,所以 =

在区间 上的单调增区间的长度和

=

(2)当 时. ,

当 , 因为 ,所以 ,

故 =

当 , 因为 ,所以

故 =

因为 ,所以 ,所以

当 时,令 ,则 ,所以 ,

当 时, ,所以 =

时, ,所以 =

在区间 上的单调增区间的长度和

=

综上得 在区间 上的单调增区间的长度和为

求数学大神帮忙,解答一道高考数学题,2014年全国卷新课标2高考文科18题。下面是题目

我兴奋的找出我06年留下的高考答案,结果发现数学是全国1的,晕啦!!

第一问很容易,随便算了一下A1=1/2,A2=1/6;

第二个问常规思路:

把(Sn-1)带入方程,得Sn的平方-(2+An)Sn+1=0;求出Sn(用An来表示)

然后用Sn-S(n-1)=(相减的结果)=An,应该能求出An

数学归纳法:

由A1,A2猜想An=1/n(n+1)

假设 n=1,k,k+1 自己慢慢算吧,这题其实不难,现在高考数学的最后一天往往不是最难得了,所以在高考的时候千万不要看都不看最后一题。

福建省近几年高考卷 数学

这题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.

设BD与AC的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;第二问通过AP=1,AD根号3,三棱锥P-ABD体积V=根号3/4,求出AB,作AH⊥PB角PB与H。

解: (1)证明:设BD与AC的交点为O,连结EO,

∵ABCD是矩形,∴O为BD中点,这是详细答案你看下。有详细的解答过程及分析。四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD中点。(1)证明:PB∥平面AEC;(2)设AP=1,AD=根号3,三棱锥P-ABD体积V=根号3/4.求A到平面PBC距离。

你自己琢磨下答案,不明白可以继续问我哦,加油~有帮助的话希望能给你个采纳哦,祝你学习进步!

2010年福建省考试说明样卷

(理科数学)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第21(1)、(2)、(3)题为选考题,请考生根据要求选答;其它题为必考题.本卷满分150分,考试时间120分钟.

第Ⅰ卷 (选择题 共50分)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.

1.复数 等于

A. B. C.-1+i D.-1-i

2.已知全集U=R,集合 ,则 等于

A. B.

C. D.

3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是

A. B.

C. D.

4.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 > ”的是

A. = B. =

C. = D.

5.右图是计算函数 的值的程序框图,在①、②、③处应分别填入的是

A. , , B. , ,

C. , , D. , ,

6.设 , 是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 的一个充分而不必要条件是

A. 且 B. 且

C. 且 D. 且

7.已知等比数列 中, ,则其前3项的和 的取值范围是

A. B.

C. D.

8.已知 是实数,则函数 的图象不可能是

9.已知实数 满足 如果目标函数 的最小值为 ,则实数 等于

A.7 B.5 C.4 D.3

10.定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系;在平面斜坐标系 中,若 (其中 、 分别是斜坐标系 轴、 轴正方向上的单位向量, , R, 为坐标系原点),则有序数对 称为点 的斜坐标.在平面斜坐标系 中,若 =120°,点 的斜坐标为(1,2),则以点 为圆心,1为半径的圆在斜坐标系 中的方程是

A. B.

C. D.

二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置.

11.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是_______.

12.若 ,则a1+a2+a3+a4+a5=____.

13.由直线 ,x=2,曲线 及x轴所围图形的面积为 .

14.一人上班有甲、乙两条路可供选择,早上定时从家里出发,走甲路线有 的概率会迟到,走乙路线有 的概率会迟到;无论走哪一条路线,只要不迟到,下次就走同一条路线,否则就换另一条路线;假设他第一天走甲路线,则第三天也走甲路线的概率为 .

15.已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:

x

0 2

3

y 2 0

据此,可推断椭圆C1的方程为 .

三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.把解答过程填写在答题卡的相应位置.

16.(本小题满分13分)

的三个内角 所对的边分别为 ,向量 =( , ), ,且 ⊥ .

(Ⅰ)求 的大小;

(Ⅱ)现给出下列四个条件:

① ;② ;③ ;④ .

试从中再选择两个条件以确定 ,求出你所确定的 的面积.

(注:只需选择一个方案答题,如果用多种方案答题,则按第一种方案给分)

17.(本小题满分13分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84

乙 92 95 80 75 83 80 90 85

(Ⅰ)用茎叶图表示这两组数据;

(Ⅱ)现要从中选派一人参加某数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;

(Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛考试进行预测,记这3次成绩中高于80分的次数为 ,求 的分布列及数学期望E .

18.(本小题满分13分)四棱锥P-ABCD的底面与四个侧面的形状和大小如图所示.

(Ⅰ)写出四棱锥P-ABCD中四对线面垂直关系(不要求证明);

(Ⅱ)在四棱锥P-ABCD中,若 为 的中点,求证: ‖平面PCD;

(Ⅲ)在四棱锥P-ABCD中,设面PAB与面PCD所成的角为 ,求 值.

19.(本小题满分13分) 以F1(0,-1),F2(0,1)为焦点的椭圆C过点P( ,1).

(Ⅰ)求椭圆C的方程; (Ⅱ)略.

20.(本小题满分14分)已知函数 .

(Ⅰ)求函数 的极值;(Ⅱ)略.

21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.

(1)(本小题满分7分)选修4-2:矩阵与变换(略).

(2)(本小题满分7分)选修4一4:坐标系与参数方程

在极坐标系中,设圆 上的点到直线 的距离为 ,求 的最大值.

(3)(本小题满分7分) 选修4—5:不等式选讲

已知 的最小值.

样卷参考答案

一、选择题:本题考查基础知识和基本运算,每小题5分,满分50分.

1.D 2.A 3.D 4.A 5.B 6.B 7.D 8.D 9.B 10.A

二、填空题:本题考查基础知识和基本运算,每小题4分,满分20分.

11.9. 12.31. 13.2 . 14. .15. .

三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.

16.解:(I)∵ ⊥ ,∴-cosBcosC+sinBsinC- =0,

即cosBcosC-sinBsinC=- ,∴cos(B+C)=- .∵A+B+C=180°,∴cos(B+C)=-cosA,

∴cosA= ,A=30°.

(Ⅱ)方案一:选择①③,可确定△ABC.∵A=30°,a=1,2c-( +1)b=0.

由余弦定理 ,整理得 =2,b= ,c= .

∴ .

方案二:选择①④,可确定△ABC.∵A=30°,a=1,B=45°,∴C=105°.

又sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°= .

由正弦定理得c= .∴ .

(注:若选择②③,可转化为选择①③解决;若选择②④,可转化为选择①④解决,此略.选择①②或选择③④不能确定三角形)

17. 解:(I)作出茎叶图如下:

(Ⅱ)派甲参赛比较合适,理由如下:

甲的成绩较稳定,派甲参赛比较合适.

注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分,如派乙参赛比较合适,理由如下:从统计的角度看,甲获得85以上(含85分)的概率 ,乙获得85分以上(含85分)的概率 . , 派乙参赛比较合适.

(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为事件A, 则 .

随机变量 的可能取值为0,1,2,3,且 服从 ,

所以变量 的分布列为 .

.(或 )

18.解法一:

(Ⅰ)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,

AD⊥平面PAB,BC⊥平面PAB,AB⊥平面PAD.

(Ⅱ)依题意AB,AD,AP两两垂直,分别以直线AB,AD,AP为x,y,z轴,

建立空间直角坐标系,如图.则 , , , .

∵E是PA中点,∴点E的坐标为 ,

, , .

设 是平面PCD的法向量.由 ,即

取 ,得 为平面PCD的一个法向量.

∵ ,∴ ,

∴ ‖平面PCD.又BE 平面PCD,∴BE‖平面PCD.

(Ⅲ)由(Ⅱ),平面PCD的一个法向量为 ,

又∵AD⊥平面PAB,∴平面PAB的一个法向量为 ,

∴ .

19.解: (Ⅰ)设椭圆方程为 (a>b>0),由已知c=1,

又2a= ,所以a= ,b2=a2-c2=1,椭圆C的方程是x2+ =1.

20.解:(Ⅰ) .

当 , ,函数 在 内是增函数,∴函数 没有极值.

当 时,令 ,得 .

当 变化时, 与 变化情况如下表:

+ 0 -

单调递增 极大值 单调递减

∴当 时, 取得极大值 .

综上,当 时, 没有极值;

当 时, 的极大值为 ,没有极小值.

21. (2)解:将极坐标方程 转化为普通方程:

可化为

在 上任取一点A ,则点A到直线的距离为

,它的最大值为4

文章标签: # 高考 # 志愿 # 2022