您现在的位置是: 首页 > 教育资讯 教育资讯

高考二卷数学答案文科版_高考二卷数学答案文科

tamoadmin 2024-06-26 人已围观

简介1.2022年云南高考数学答案解析及试卷汇总(含文理科)2.2012浙江高考文科数学选择填空答案?3.2022高考数学题及答案(2020高考数学题及答案解析)4.山东高考文科数学的答案5.2021高考数学文科真题及答案完整解析版(全国甲卷)6.2010年安徽文科数学高考卷答案及详解(手机能看的)解:甲的平均数是 (68+72+70+69+71)/5=70∴甲的方差是 1/5(4+4+0+1+1)=

1.2022年云南高考数学答案解析及试卷汇总(含文理科)

2.2012浙江高考文科数学选择填空答案?

3.2022高考数学题及答案(2020高考数学题及答案解析)

4.山东高考文科数学的答案

5.2021高考数学文科真题及答案完整解析版(全国甲卷)

6.2010年安徽文科数学高考卷答案及详解(手机能看的)

高考二卷数学答案文科版_高考二卷数学答案文科

解:甲的平均数是 (68+72+70+69+71)/5=70∴甲的方差是 1/5(4+4+0+1+1)=2

乙的平均数是(69+71+68+68+69)/5=69∴乙的方差是 1/5(1+1+4+4+1)=2.2

有两者的平均数和方差可知甲的平均产量较高且产量较稳定

2022年云南高考数学答案解析及试卷汇总(含文理科)

对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。

高考文科数学知识点

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。

文科数学高频必考考点

第一部分:选择与填空

1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);

2.常用逻辑用语(充要条件,全称量词与存在量词的判定);

3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);

4.幂、指、对函数式运算及图像和性质

5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);

6.空间体的三视图及其还原图的表面积和体积;

7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;

8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;

9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);

10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;

11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;

12.向量数量积、坐标运算、向量的几何意义的应用;

13.正余弦定理应用及解三角形;

14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;

15.线性规划的应用;会求目标函数;

16.圆锥曲线的性质应用(特别是会求离心率);

17.导数的几何意义及运算、定积分简单求法

18.复数的概念、四则运算及几何意义;

19.抽象函数的识别与应用;

第二部分:解答题

第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;

第18题:(文)概率与统计(概率与统计相结合型)

(理)离散型随机变量的概率分布列及其数字特征;

第19题:立体几何

①证线面平行垂直;面与面平行垂直

②求空间中角(理科特别是二面角的求法)

③求距离(理科:动态性)空间体体积;

第20题:解析几何(注重思维能力与技巧,减少计算量)

①求曲线轨迹方程(用定义或待定系数法)

②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)

③求定点、定值、最值,求参数取值的问题;

第21题:函数与导数的综合应用

这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想

一般设计三问:

①求待定系数,利用求导讨论确定函数的单调性;

②求参变数取值或函数的最值;

③探究性问题或证不等式恒成立问题。

第22题:三选一:

(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;

(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。

(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。

2018高考文科数学知识点:高中数学知识点 总结

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考文科数学知识点总结

乘法与因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/aX1__X2=c/a注:韦达定理

判别式

b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有一个实根

b2-4ac<0注:方程有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和公式

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理:a/sinA=b/sinB=c/sinC=2R

注:其中R表示三角形的外接圆半径

余弦定理:b2=a2+c2-2accosB

注:角B是边a和边c的夹角

高考文科数学知识点总结相关 文章 :

★ 2022北京卷高考文科数学试题及答案解析

★ 2022全国新高考Ⅰ卷文科数学试题及答案解析

★ 2022年全国新高考1卷数学试题及答案解析

★ 2022全国新高考Ⅱ卷文科数学试题及答案解析

★ 高中导数知识点总结大全

★ 山东2022高考文科数学试题及答案解析

★ 湖北2022高考文科数学试题及答案解析

★ 2022河北高考文科数学试题及答案解析

★ 高中文科数学复习指导与注意事项

★ 2017高考数学三角函数知识点总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

2012浙江高考文科数学选择填空答案?

2022年全国高考将在6月7日开考,相信大家都非常想要知道云南高考文科数学和理科数学科目的答案及解析,我就为大家带来2022年云南高考数学答案解析及试卷汇总。

2022年云南高考答案及试卷汇总

点击即可查看

大家可以在本文 后输入高考分数查看能上的大学,了解更多院校详细信息。

、云南高考数学真题试卷(考后更新)

文科数学

理科数学

二、云南高考 数学真题 答案 解析

文科数学

理科数学

2022高考数学题及答案(2020高考数学题及答案解析)

1-5.DDACB 6-10. ACBCA

11.160 12.2/5 13.1/120 14. [0,7/2] 15.-16 16.3/2 17. 9/4

山东高考文科数学的答案

今天小编辑给各位分享2022高考数学题及答案的知识,其中也会对2020高考数学题及答案解析分析解答,如果能解决你想了解的问题,关注本站哦。

2022年全国乙卷高考数学试题答案

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题答案

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题答案相关文章:

★2022高考全国乙卷试题及答案

★2022高考理科数学乙卷试题解析

★2022年全国乙卷高考理科数学

★2022年全国乙卷文科数学卷真题公布

★2022年高考数学试题及答案

★2022年全国乙卷高考数学真题及答案

★2022年全国理科数学卷试题答案及解析

★2022全国Ⅰ卷高考数学试题及参考答案一览

★2022年英语全国乙卷试题及答案

★2022年高考乙卷数学真题试卷

2022年全国新高考1卷数学试题及答案解析

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学试题答案解析

高考数学复习主干知识点汇总:

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及答案解析相关文章:

★2022高考甲卷数学真题试卷及答案

★2022年新高考Ⅱ卷数学真题试卷及答案

★2022高考全国甲卷数学试题及答案

★2022高考数学大题题型总结

★2022全国乙卷理科数学真题及答案解析

★2022年全国乙卷高考数学试卷

★2022年新高考1卷语文真题及答案解析

★全国新高考一卷2022语文试题及答案一览

★2022江西高考文科数学试题及答案

★2022全国新高考II卷语文试题及答案解析

2022年全国新高考1卷数学试题及答案详解

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学答案详解

2022高考数学知识点总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式

②根据具体问题中的数量关系列不等式并解决简单实际问题

③用数轴表示一元一次不等式的解集

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

一、排列

1定义

从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

排列数的公式:Amn=n

特例:当m=n时,Amn=n!=n×3×2×1

规定:0!=1

二、组合

1定义

从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM

2.排列与组合

Anm=n-=n!/!Ann=n!

Cnm=n!/!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法

插空法间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

把具体问题转化或归结为排列或组合问题;

通过分析确定运用分类计数原理还是分步计数原理;

分析题目条件,避免“选取”时重复和遗漏;

列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn

特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及答案详解相关文章:

★2022高考北京卷数学真题及答案解析

★2022高考甲卷数学真题试卷及答案

★2022北京卷高考文科数学试题及答案解析

★2022高考全国甲卷数学试题及答案

★2022年新高考Ⅱ卷数学真题试卷及答案

★2022全国乙卷理科数学真题及答案解析

★2022高考数学大题题型总结

★2022年高考全国一卷作文预测及范文

★2022年高考数学必考知识点总结最新

★2022年全国乙卷高考数学试卷

2022年北京高考数学试题及参考答案

相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!

2022年北京高考数学试题

2022年北京高考数学试题参考答案

高考数学答题策略

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

一、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。

二、审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。

三、难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

四、快与准的关系

在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

2022年北京高考数学试题及参考答案相关文章:

★2022数学高考题及答案

★2022新高考数学Ⅰ卷试卷及参考答案

★2022年全国Ⅰ卷高考数学试题及参考答案公布

★2022全国一卷高考数学试题及答案

★2022新高考全国一卷数学试卷及答案解析

★2022年高考数学试题及答案

★2022全国新高考Ⅰ卷数学卷完整试题及答案一览

★2022新高考全国一卷数学试卷答案解析

★2022年高考数学全国乙卷试题答案

★2022新高考数学试题及答案详解

2021高考数学文科真题及答案完整解析版(全国甲卷)

试题与答案

数学试题(文科)

第Ⅰ卷 选择题(共50分)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)

1.已知集合 , ,则 =( A )

A. B.

C. D.

2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )

A.6 B.-2 C.4 D.-6

3.已知 ,则“ ”是“ ”的 ( B )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

4.已知点P(x,y)在不等式组 表示的平面区域上运动,

则z=x-y的取值范围是( )

A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]

5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )

A. B. C. D.

一年级 二年级 三年级

女生 373

男生 377 370

6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取名学生,则应在三年级抽取的

学生人数为( )

A.24 B.18 C.16 D.12

7.平面向量 =( )

A.1 B.2 C.3 D.

8.在等差数列 中,已知 ,那么 的值为( )

A.-30 B.15 C.-60 D.-15

9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )

A.①是真命题,②是假命题 B.①是假命题,②是真命题

C.①②都是真命题 D.①②都是假命题

10.已知一个几何体的三视图如所示,则该几何体的体积为( )

A.6 B.5.5

C.5 D.4.5

第Ⅱ卷 非选择题(共100分)

二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.

(一)必做题(11~14题)

11.已知 ,且 是第二象限的角,

则 ___________.

12.执行右边的程序框图,若 =12, 则输

出的 = ;

13.函数 若

则 的值为: ;

14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.

(二)选做题(15~17题,考生只能从中选做一题)

15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;

16.(选修4—5 不等式选讲)不等式 的解集是: ;

17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .

三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)

18.(本小题12分)

已知向量 , ,设 .

(1).求 的值;

(2).当 时,求函数 的值域。

19.(本小题12分)

已知函数 .

(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,

求方程 有两个不相等实根的概率;

(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.

20.(本小题12分)

在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.

(1)求证:BC⊥AD;

(2)求三棱锥C—AOD的体积.

21.(本小题12分)

已知数列 的前n项和为 , 且满足 ,

(1) 求 的值;

(2) 求证:数列 是等比数列;

(3) 若 , 求数列 的前n项和 .

22、(本小题13分)

已知函数 在点 处的切线方程为 .

(1)求 的值;

(2)求函数 的单调区间;

(3)求函数 的值域.

23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求直线AB的斜率;

(3)求△PAB面积的最大值.

文科数学参考答案与评分标准

一、选择题:

A卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案 A D A B D C B A D C

B卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案

二、填空题:

(一)必做题

11. ; 12.4.; 13.1或 ; 14. .

(二)选做题

15.相交;16. ;17. .

三、解答题:

18.解: =

=

= ……………………………………(4分)

(1)

= …………………………(8分)

(2)当 时, ,

∴ ………………………(12分)

19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素

∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),

(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12.

设“方程 有两个不相等的实根”为事件A,

当 时方程 有两个不相等实根的充要条件为

当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)

即A包含的基本事件数为6.

∴方程 有两个不相等的实根的概率

……………………………………………………(6分)

(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数

则试验的全部结果构成区域

这是一个矩形区域,其面积

设“方程 没有实根”为事件B

则事件B构成的区域为

即图中阴影部分的梯形,其面积

由几何概型的概率计算公式可得方程 没有实根的概率

………………………………………………(12分)

20.解法一:(1)∵BOCD为正方形,

∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角

∴AO⊥BO ∵AO⊥CO 且BO∩CO=O

∴AO⊥平面BCO 又∵

∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO

∴BC⊥AD …………(6分)

(2) …………………………(12分)

21.解:(1)因为 ,令 , 解得 ……1分

再分别令 ,解得 ……………………………3分

(2)因为 ,

所以 ,

两个代数式相减得到 ……………………………5分

所以 ,

又因为 ,所以 构成首项为2, 公比为2的等比数列…7分

(3)因为 构成首项为2, 公比为2的等比数列

所以 ,所以 ……………………………8分

因为 ,所以

所以

因此 ……………………………11分

所以 ………………………12分

22.解:(1)

∵ 在点 处的切线方程为 .

∴ …………………………(5)

(2)由(1)知: ,

x

2

+ 0 — 0 +

极大

极小

∴ 的单调递增区间是: 和

的单调递减区间是: ………………………………(9)

(3)由(2)知:当x= -1时, 取最小值

当x= 2时, 取最大值

且当 时, ;又当x<0时, ,

所以 的值域为 ………………………………………(13)

23.解:(1) , ,设

则 ,

又 , ,∴ ,即所求 ……(5分)

(2)设 : 联立

得:

∵ ,∴ ,

同理 , ∴ ……(10分)

(3)设 : ,联立

,得: ,∴

∴|AB|=

∴S=

当且仅当m=±2时等号成立。…………………………………(14分)

2010年安徽文科数学高考卷答案及详解(手机能看的)

全国卷的数学试卷都分为文科和理科两个版本,文科的试卷难度一般会比理科稍微低一些,我就在本文为大家带来2021高考数学文科真题及答案完整解析版,供2021年考生参考。

一、2021高考数学文科真题及答案完整解析版

试题如下

参考答案

二、志愿填报参考文章

双一流大学a类与b类的区别?附双一流a类b类大学名单(2021参考)

南京大学分出来多少个大学?南京大学比清华差多少?

最吃香的三个师范专业?女孩学什么师范类专业好?

第Ⅰ卷(选择题 共50分)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.

(1)若A= ,B= ,则 =

(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)

答案:C 解析:画数轴易知.

(2)已知 ,则i( )=

(A) (B) (C) (D)

答案:B 解析:直接计算.

(3)设向量 , ,则下列结论中正确的是

(A) (B)

(C) (D) 与 垂直

答案:D 解析:利用公式计算,采用排除法.

(4)过 点(1,0)且与直线x-2y-2=0平行的直线方程是

(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0

答案:A 解析:利用点斜式方程.

(5)设数列{ }的前n项和 = ,则 的值为

(A) 15 (B) 16 (C) 49 (D)

答案:A 解析:利用 =S8-S7,即前8项和减去前7项和.

(6)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是

答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,采用排除法易知.

(7)设a= ,b= ,c= ,则a,b,c的大小关系是

(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a

答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.

(8)设x,y满足约束条件 则目标 函数z=x+y的最大值是

(A)3 (B) 4 (C) 6 (D)8

答案:C 解析:画出可行域易求.

(9)一个几何体的三视图如图,该几何体的表面积是

(A)372 (C)292

(B)360 (D)280

答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.

(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是

(A) (B) (C) (D)

答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.

数 学(文科)(安徽卷)

第Ⅱ卷(非选择题共100分)

二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置?

(11)命题“存在x∈R,使得x2+2x+5=0”的否定是

答案:对任何X∈R,都有X2+2X+5≠0

解析:依据“存在”的否定为“任何、任意”,易知.

(12)抛物线y2=8x的焦点坐标是

答案:(2,0) 解析:利用定义易知.

(13)如图所示,程序框图(算法流程图)的输出值x=

答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.

(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .

答案:5.7% 解析: , ,易知 .

(15)若a>0 ,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).

①ab≤1; ② + ≤ ; ③a2+b2≥2; ④a3+b3≥3;

答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用 易知③正确

三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.

(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA= .

(1)求

(2)若c-b= 1,求a的值.

(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.

解:由cosA=1213 ,得sinA= =513 .

又12 bc sinA=30,∴bc=156.

(1) =bc cosA=156?1213 =144.

(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2?156?(1-1213 )=25,

∴a=5

(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 .

(1)求椭圆E的方程;

(2)求∠F1AF2的角平分线所在直线的方程.

(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.

解:(1)设椭圆E的方程为 由e=12 ,得ca =12 ,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为

(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=34 (X+2),

即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,

∠F1AF2的角平分线所在直线的斜率为正数.

设P(x,y)为∠F1AF2的角平分线所在直线上任一点,

则有

若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.

于是3x-4y+6=-5x+10,即2x-y-1=0.

所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.

18、(本小题满分13分)

某市2010年4月1日—4月30日对空气 污染指数的检测数据如下(主要污染物为可吸入颗粒物):

61,76,70,56,81,91,92,91,75 ,81,88,67,101,103,95,91,

77,86,81,83,82,82,,79,86,85,75,71,49,45,

(Ⅰ) 完成频率分布表;

(Ⅱ)作出频率分布直方图;

(Ⅲ)根据国家标准,污 染指数在0~50之间时 ,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

请你依据所给数据和上述标准,对 该市的空气质量给出一个简短评价.

(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.

解:(Ⅰ) 频率分布表:

分 组 频 数 频 率

[41,51) 2 230

[51,61) 1 130

[61,71) 4 430

[71,81) 6 630

[81,91) 10 1030

[91,101) 5 530

[101,111) 2 230

(Ⅱ)频率分布直方图:

(Ⅲ)答对下述两条中的一条即可:

(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.

(ii)轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.

(19) (本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB;

(Ⅲ)求四面体B—DEF的体积;

(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.

(Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH= AB 又EF∥AB且 EF= AB

∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.

∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.

(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.

又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.

∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.

∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,

∴ AC⊥平面EDB.

(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.

∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC=

(20)(本小题满分12分)

设函数f(x)= sinx-cosx+x+1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.

(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.

解:由f(x)=sinx-cosx+x+1,0﹤x﹤2 ,

知 =cosx+sinx+1,

于是 =1+ sin(x+ ).

令 =0,从而sin(x+ )=- ,得x= ,或x=32 .

当x变化时, ,f(x)变化情况如下表:

X (0, )

( ,32 )

32

(32 ,2 )

+ 0 - 0 +

f(x) 单调递增↗ +2

单调递减↘ 32

单调递增↗

因此,由上表知f(x)的单调递增区间是(0, )与(32 ,2 ),单调递减区间是( ,32 ),极小值为f(32 )=32 ,极大值为f( )= +2.

(21)(本小题满分13分)

设 , ..., ,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y= x相切,对每一个正整数n,圆 都与圆 相互外切,以 表示 的半径,已知 为递增数列.

(Ⅰ)证明: 为等比数列;

(Ⅱ)设 =1,求数列 的前n项和.

(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.

解:(Ⅰ)将直线y= x的倾斜角记为 , 则有tan = ,sin = 12 .

设Cn的圆心为( ,0),则由题意知 = sin = 12 ,得 = 2 ;同理 ,题意知 将 = 2 代入,解得 rn+1=3rn.

故{ rn }为公比q=3的等比数列.

(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n? ,

记Sn= , 则有 Sn=1+2?3-1+3?3-2+………+n? . ①

=1?3-1+2?3-2+………+(n-1) ? +n? . ② ①-②,得

=1+3-1 +3-2+………+ -n? = - n? = –(n+ )?

Sn= – (n+ )? .

文章标签: # 高考 # 答案 # 数学