您现在的位置是: 首页 > 热门院校 热门院校

安徽高考数学答案解析,安微高考数学答案

tamoadmin 2024-05-28 人已围观

简介1.安徽高考数学2023难吗2.2022年全国新高考1卷数学试题及答案详解3.2023年安徽省高考数学难吗4.(2011安徽高考题,数学的, 高手帮帮忙5.2014年安徽理科数学21题的解答方法是什么啊?还是很难的,难怪是高考压轴题啊,毫无思路6.2011年数学高考试卷中,江苏省第二十题第二问答案中有n>=8,为什么要以8为界线呢?还有安徽省卷的第十八题一、新高考I卷高考数学试卷真题和答案解析新高

1.安徽高考数学2023难吗

2.2022年全国新高考1卷数学试题及答案详解

3.2023年安徽省高考数学难吗

4.(2011安徽高考题,数学的, 高手帮帮忙

5.2014年安徽理科数学21题的解答方法是什么啊?还是很难的,难怪是高考压轴题啊,毫无思路

6.2011年数学高考试卷中,江苏省第二十题第二问答案中有n>=8,为什么要以8为界线呢?还有安徽省卷的第十八题

安徽高考数学答案解析,安微高考数学答案

一、新高考I卷高考数学试卷真题和答案解析新高考I卷高考数学试卷真题和答案解析正在快马加鞭的整理当中,考试结束后我们第一时间发布word文字版。考生可以在线点击阅览:

二、新高考I卷高考数学卷答题技巧

一、规范书写

高考文科数学答题技巧之一就是规范书写,这一点是文理通用的技巧。卷面评分标准就是规范度,这就要求不但要对、而且要全且规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,“感情分”也就相应低了,所以高考答题书写要工整,保证卷面能得分。

二、讲究策略

对于高考文科数学题要力求做的对、全、得满分,高考文科数学有两种常用方法:

1。分步解答:对于疑难问题,考生可以将它划分为一系列的步骤,先解决问题的一部分,能解到几步就写几步,每进行一步就可得到这一步的分数,也可以把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。从局部到整体,形成思路,获得解题成功。在高考文科数学答题过程中尽量多的列举应用到的公式。

2。跳步解答:当文科数学在解题的某一环节出现问题时,可以跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

三、合理分配时间

1、文科数学就是和时间的斗争。高考文科数学试卷一发下来后,首先把全部问题看一遍。找出其中看上去最容易解答的题,然后假定步骤,思考怎么样的顺序解题才最好。

2、切忌不看题目盲目背题,要仔细审题,清楚题目要求你解决什么问题,然后有条不紊迅速解题,提高准确率。

3、解题格式要规范,重点步骤要突出。

4、选择题时间控制在35分中以内。小题小做、巧做、简单做,选择题和填空题要多用数形结合、特殊值验证法等技巧,节约时间。

5、保持心静,以不变应万变。切莫因旁人的翻卷或其他行为干扰自己的解决思路。这些都是高考文科数学应试答题高分技巧。

四、掌握文科数学失分原因

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

正确运用高考文科数学答题技巧,不仅可以预防各种心理障碍造成的不合理丢分和计算失误及笔误,而且能运用科学的检索方法,考出最佳成绩。

三、新高考I卷哪些省份使用

适用地区:山东、福建、湖北、江苏、广东、湖南、河北

四、新高考I卷难吗

河北考生:

考完数学,从考场出来那一刻,头都是沉重的,心里说不出的滋味,感觉填空看着都是灰色。今年的数学试题,总体上出的是中规中矩,但是题型很新颖,很抽象,和平时做的题目完全不是一个水平的题目。选择题部分,也比平时难一些,看着题目很简单,但就是不知道怎么入手解题,大题部分,就更崩溃了,只有两道是有点把握得,剩下的都只答了一半。

总体来讲,试题是比平时要难的,至少难个20分左右。平时也都能考个100来分,这下估计七八十就算幸运了。

山东考生:

我觉得数学试题难度还行,今年发挥的还可以,平时都能考个120分,这次感觉会少一些,题目比去年要难一些。我有做过去年的数学试卷,考了127,今年的数学,能110就很知足了。主要是题目比较烧脑,不像平时的题目那样,一看就知道大概咋解题,高考的数学题,估计很多考生都要比平时低一些,今年的考生应该更明显,确实题目是难了一些。 五、安徽高考数学试卷答案解析 一.2022年新高考I卷高考语文试卷真题和答案解析[Word文字版] ;

安徽高考数学2023难吗

高考结束之后,各位考生和家长最想知道的就是考生考的怎么样,有很多考生在考完很着急想要知道试题答案从而进行自我估分,下面是我为大家整理的关于2022年全国新高考I卷数学真题及答案,如果喜欢可以分享给身边的朋友喔!

2022年全国新高考I卷数学真题

2022年全国新高考I卷数学真题答案

高考数学七大考试技巧

一、提前进入“角色”

高考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区,一方面可以 消除紧张 、稳定情绪、从容进场,另一方面也留有时间提前进入“角色”——让大脑开始简单的数学活动,进入单一的数学情境。如:

1.清点一下用具是否带齐(笔、橡皮、作图工具、身分证、准考证等,用具由省考试院统一发放)。

2.把一些基本数据、常用公式、重要定理在脑子里“过过**”。

3.最后看一眼难记易忘的知识点。

4.互问互答一些不太复杂的问题。

二、精神要放松,情绪要自控

最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的 方法 有三种:

①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。

②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。

③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。

三、迅速摸透“题情”

刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事:

1.顺利解答那些一眼看得出结论的简单选择或填空题(建议第一题做两遍,直至答案一致为止,一旦解出,情绪立即会稳定)。

2.对不能立即作答的题目,可一面通览,一面粗略分为甲、已两类:甲类指题型比较熟悉、估计上手比较容易的题目,乙类是题型比较陌生、自我感觉比较困难的题目。

3.做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题。

通览全卷是克服“前面难题做不出,后面易题没时间做”的有效 措施 ,也从根本上防止了“漏做题”。

四、信心要充足,暗示靠自己

答卷中,见到简单题,要细心,不要忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。

五、三先三后

在通览全卷、并作了简单题的第一遍解答后,情绪基本趋于稳定,大脑趋于亢奋,此后七八十分钟内就是最佳状态的发挥或收获丰硕果实的黄金季节了。实践证明,满分卷是极少数,绝大部分考生都只能拿下部分题目或题目的部分得分。因此,实施“三先三后”及“分段得分”的考试艺术是明智的。

1.先易后难。就是说,先做简单题,再做复杂题;先做甲类题,再做乙类题。当进行第二遍解答时(通览并顺手解答算第一遍),就无需拘泥于从前到后的顺序,应根据自己的实际,跳过啃不动的题目,从易到难。

2.先高(分)后低(分)。这里主要是指在考试的后半段时要特别注重时间效益,如两道题都会做,先做高分题,后做低分题,以使时间不足时少失分;到了最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。

3.先同后异。就是说,可考虑先做同学科同类型的题目。这样思考比较集中,知识或方法的沟通比较容易,有利于提高单位时间的效益。一般说来,考试解题必须进行“兴奋灶”的转移,思考必须进行代数学科与几何学科的相互换位,必须进行从这一章节到那一章节的跳跃,但“先同后异”可以避免“兴奋灶”过急、过频和过陡的跳跃。

三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”现象发生。

六、一慢一快

就是说,审题要慢,做题要快。

题目本身是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正看清题意。解题实践表明,条件预示可知并启发解题手段,结论预告需知并诱导解题方向。凡是题目未明显写出的,一定是隐蔽给予的,只有细致的审题才能从题目本身获得尽可能多的信息,这一步不要怕慢,建议将题目读两遍。

找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,啰嗦重复,尤忌画蛇添足。一般来说,一个原理或者一个定理公式写一步就可以了,至于不是题目考查的`过渡知识,可以直接写出结论。高考允许合理省略非关键步骤。

为了提高书写效率,应尽量使用数学语言、符号,这比文字叙述要节省而严谨。

七、分段得分

对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。

鉴于这一情况,高考中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。其实,考生的“分段得分”是高考“分段评分”的逻辑必然。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。高考阅卷 经验 表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答

如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。

②跳步答题

解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

③退步解答

“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④辅助解答

一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。

书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真→学习认真→成绩优良→给分偏高。

有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是高考必须考查的一种能力——合情推理能力。

2022年全国新高考I卷数学真题及答案出炉相关 文章 :

★ 2022全国新高考I卷语文试题及答案

★ 2022年全国新高考Ⅰ卷英语试题及答案最新

★ 2022年全国一卷高考真题试卷试题

★ 2022年北京高考数学试卷

★ 2022年全国新高考II卷数学真题及答案

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2021新高考全国1卷数学真题及答案

★ 2022全国新高考Ⅰ卷英语真题及答案解析

★ 2022高考甲卷数学真题试卷及答案

2022年全国新高考1卷数学试题及答案详解

安徽高考数学2023难吗介绍如下:

本次数学题目难度不算特别大,题目较为常规,与一模相比题目更简单,比二模的题目要难。

高考数学选择题的答题方法和技巧有直接法、筛选法、特殊值法、验证法和图像法。

1、直接法

有些选择题是由计算题、应用题、证明题、判断题改编而成的。这类题型可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。

2、筛选法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。可通过筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。如筛去不合题意的以后,结论只有一个,则为应选项。

3、特殊值法

有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

4、验证法

通过对试题的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

5、图象法

在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。

2023年安徽省高考数学难吗

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学答案详解

2022高考数学知识点 总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式(组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

③用数轴表示一元一次不等式(组)的解集

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查 抽象思维 能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示 方法 的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

一、排列

1定义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及答案详解相关 文章 :

★ 2022高考北京卷数学真题及答案解析

★ 2022高考甲卷数学真题试卷及答案

★ 2022北京卷高考文科数学试题及答案解析

★ 2022高考全国甲卷数学试题及答案

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022全国乙卷理科数学真题及答案解析

★ 2022高考数学大题题型总结

★ 2022年高考全国一卷作文预测及范文

★ 2022年高考数学必考知识点总结最新

★ 2022年全国乙卷高考数学(理科)试卷

(2011安徽高考题,数学的, 高手帮帮忙

2023年安徽省高考数学不难。

难度分析:

2023年安徽高考数学试卷总体来说不难。从近十年的安徽高考数学试题难度来看,总体上难度呈现逐渐下降趋势。2023安徽高考数学试题难度应该是与2022年保持稳定,基本上难度系数去年相当。

安徽高考数学试题题目比较灵活,在需要一些分析和转化的情况下,如果没有底层的思考,没有对知识本质的深刻理解,没有很好的逻辑思维能力和分析解决问题的能力,计算又不稳定,单纯的依靠刷题,在现在的安徽高考数学试题方向中,是会被淘汰的。

安徽高考模式:

2023安徽高考模式是“3+文科综合/理科综合”的模式。各考6个学科,4种试卷,即报考文科的学生考:语文、数学、英语和文科综合,报考理工科的学生考:语文、数学、英语和理科综合。

2023年安徽省高考文理科录取:

依据志愿设置,文理科录取分本科提前批、高职(专科)提前批、本科第一批、本科第二批、高职(专科)批,共5个批次。

本科提前批分为军事、公安司法(含公安司法国家专项计划)和应急消防、公费师范、优师专项、免费医学定向、农技推广人才定向和其他等类。本科提前批后还单设若干特殊类型招生录取批次,依次分别为国家专项计划、地方专项计划、高校专项计划。

本科第一批平行志愿包含A、B、C、D、E、F六所院校;本科第二批平行志愿包含A、B、C、D、E、F、G、H、I、J十所院校。本科第一、二批的每所院校设6个专业志愿及专业服从志愿。

高职(专科)提前批分为定向培养士官、免费医学定向、公安司法、农技推广人才定向和其他共5类,定向培养士官、免费医学定向、农技推广人才定向实行平行志愿。

设置A、B、C、D、E、F六所院校,每所院校设6个专业志愿(定向培养士官设专业服从,免费医学定向、农技推广人才定向不设专业服从);公安司法和其他类设1个院校志愿,6个专业及专业服从志愿。考生的高职提前批次志愿只可选报一类。

以上数据出自连接安徽。

2014年安徽理科数学21题的解答方法是什么啊?还是很难的,难怪是高考压轴题啊,毫无思路

(1)P=p1+(1-p1)*p2+(1-p1)*(1-p2)*p3

甲能完成+甲不能完成乙能完成+甲乙不能完成丙能完成

(2)P(x=1)=q1,P(x=2)=(1-q1)*q2,P(x=3)=(1-q1)*(1-q2),EX=5-2q1-q2+q1q2

第一个人能完成 ,,,,,

第一个不能完成第二个能,,,,

一二不能三能

P(x=1)* 1+P(X=2)*2+P(X=3)*3

(3)EX=5-2q1-q2+q1q2,

=(1-q1)(2-q2)+3

q1大,q2大,E大,

q1>q2,E大

2011年数学高考试卷中,江苏省第二十题第二问答案中有n>=8,为什么要以8为界线呢?还有安徽省卷的第十八题

本题是一道压轴题,考查的知识众多,涉及到函数,数列,不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.答案看这里构造函数,等价转化是关键

设实数c>0,整数p>1,n∈N*

证明:当x>-1且x不等于 0时,(1+x)^p>1+px

数列{an}满足a1>c^(1/p),an+1=(p-1)an/p+ c*[an^(1-p)]/p。证明an>an+1>c^(1/p)

原题:设M为部分正整数组成的集合,数列{an}的首项a1 = 1,前n项和为Sn,已知对任意整数k属于M,当n>k时,S(n+k)+S(n-k)=2(Sn+Sk)都成立。

设M ={3,4},求数列{an}的通项公式.

网上节选的答案:当k∈ M ={3,4}且n>k时,Sn+k + Sn -k = 2Sn + 2Sk且Sn+1+k + Sn +1-k = 2Sn+1 + 2Sk,,两式相减得an+1+k + an +1 -k = 2an+1,即an+1+k - an+1 = an+1 - an +1 -k .所以当n≥8时,an - 6, an - 3, an, a n+ 3, an+ 6成等差数列,且an - 6, an - 2, an + 2, an + 6也成等差数列.

为何要以8为界线呢?主要是想使得n分别取3和4时成的等差数列有共同的等差项数,不然不直接令K=3,或者K=4呢,干嘛要这样烦呢?正好,当n≥8时,有了共同的项数a(n+6)

先把a(n+1+k) - a(n+1) = a(n+1) - a(n +1 -k)转化为a(n+1+k) +a(n +1 -k)=2a(n+1).

因为k∈ M ={3,4},所以当k=3时,即当n>k=3时,a(n+4)+a(n-2)=2a(n+1)

当n>4时,a(n+3)+a(n-3)=2an,当n>5时,a(n+2)+a(n-4)=2a(n-1),当n>6时,a(n+1)+a(n-5)=2a(n-2),,当n>7时,an+a(n-6)=2a(n-3),当n>7时,则an,a(n-3),a(n-6)成等差数列。推出:即n≥8时,a(n+6),a(n+3),an,a(n-3),a(n-6)成等差数列.

所以又当k=4时,即当n>k=4时,a(n+5)+a(n-3)=2a(n+1),当n>5时,a(n+4)+a(n-4)=2an,

当n>6时,a(n+3)+a(n-5)=2a(n-1),当n>7时a(n+2)+a(n-6)=2a(n-2),当n>7时,则a(n+2),a(n-2),a(n-6)成等差数列.又推出:即n≥8时,a(n+6),a(n+2),a(n-2),a(n-6)成等差数列.

……后面n≥8时,a(n+2)-an=an-a(n-2),当n≥9时,a(n+1)-a(n-1)=a(n-1)-a(n-3),即a(n+1)+a(n-3)=2a(n-1),即n≥9时,a(n+3),a(n+1),a(n-1),a(n-3)成等差数列.

这个方法不好,有点像在拼凑,网上还有另外一种解法,如下:

Sn + 3 + Sn -3 = 2(Sn+ S3), Sn + 4+ Sn -2 = 2(Sn + 1+ S3)an + 4 + an -2 = 2an + 1(n≥4)

数列{a3n -1}、{a3n}、{a3n + 1}(n≥1)都是等差数列

Sn- a1为三个等差数列前若干项之和的和Sn = an2 + bn + c(a、b、c为常数);

S1 = a1, Sn + 3 + Sn - 3 =2(Sn+ S3), Sn + 4 + Sn - 4=2(Sn+ S4) a + b + c = 1, 3b + c = 0, 4b + c = 0,a = 1, b = c = 0Sn = n2 an = Sn - Sn - 1(S0 = 0)= n2 -(n -1)2 = 2n -1.

文章标签: # 高考 # 数学 # 不等式