您现在的位置是: 首页 > 热门院校 热门院校
重庆数学高考答案及解析,重庆高考数学文科答案
tamoadmin 2024-06-24 人已围观
简介1.2009高考数学文科全国卷1答案2.全国甲卷高考数学试卷真题和答案解析[Word文字版]3.高考文科数学知识点总结归纳4.问一道高考文科数学题!!f(x)f(1)恒成立证明x=1是函数取得最大值的时候2+Q=2kπk∈ZQ=2kπ-2f(x)=cos(2x+2kπ-2)=cos(2x-2)设g(x)=f(x+1)=cos[2(x+1)-2]=cos2x g(-x)=g(x)固y=f(x+1)为
1.2009高考数学文科全国卷1答案
2.全国甲卷高考数学试卷真题和答案解析[Word文字版]
3.高考文科数学知识点总结归纳
4.问一道高考文科数学题!!
f(x)≤f(1)恒成立
证明x=1是函数取得最大值的时候2+Q=2kπ
k∈Z
Q=2kπ-2
f(x)=cos(2x+2kπ-2)
=cos(2x-2)
设g(x)=f(x+1)=cos[2(x+1)-2]=cos2x
g(-x)=g(x)
固y=f(x+1)为偶函数
设h(x)=f(x-1)=cos(2x+4)
明显答案选A
希望可以帮到你,谢谢!
2009高考数学文科全国卷1答案
1.试说明:4个连续整数的积与1的和必定是一个完全平方式.
2.已知:a的平方*b的平方+a的平方+b的平方+1=4ab,求a,b的值.
3.已知:a的平方+b的平方+4a-2b+5=0,求:a+b/a-b.
4.已知:x的平方+y的平方+z的平方-2x+4y-6z+14=0,求:x+y+z的值.
5.如果y=x的平方-2x+5,当x为任意有理数时,y的最小值是多少?
提问者: 英俊舒米 - 三级最佳答案注意:a^2=a的平方
1.设四个连续整数为n-1,n,n+1,n+2,则(n-1)n(n+1)(n+2)+1=(n^2+n-1)^2
2.原式=(a^2b^2-2ab+1)+(a^2+b^2-2ab)=(ab-1)^2+(a-b)^2=0
所以ab=1,a=b
所以a=b=±1
3.原式=(a^2+4a+4)+(b^2-2b+1)=(a+2)^2+(b-1)^2=0
所以a=-2,b=1,代入即可.
4.原式=(x^2-2x+1)+(y^2+4y+4)+(z^2-6Z+9)=(x-1)^2+(y+2)^2+(z-3)^2=0
所以x=1,y=-2,z=3,代入即可.
5.y=x^2-2x+5=(x^2-2x+1)+4=(x-1)^2+4
因为(x-1)^2≥0,所以(x-1)^2+4≥4,
所以y=x^2-2x+5=(x^2-2x+1)+4=(x-1)^2+4最小值是4.
74回答者: ninjaraphael - 三级 2007-6-29 10:24
我来评论>>
提问者对于答案的评价:大家的答案对我都很有启发,也很正确,谢谢大家拉!
相关内容
急求高数数学答案解题步骤 哪位大哥大姐 可以帮我啊 2009-11-28 急求高数数学答案 哪位大哥大姐 可以帮我啊 1 2009-11-29 急求初三数学答案 25 2009-7-6 急求小学数学答案 8 2009-5-6 好心人帮帮忙吧,急求高一数学答案 1 2008-10-7更多关于数学答案的问题>>
查看同主题问题: 数学
其他回答 共 3 条
1、(X-1)X(X+1)(X+2)+1=X的四次方+2*X的三次方-X的平方-2X+1=(X的平方+X-1)的平方
2、a的平方*b的平方+a的平方+b的平方+1-4ab=(a的平方*b的平方-2ab+1)+(a的平方+b的平方-2ab)=(a-b)的平方+(ab-1)的平方=0
a-b=0 ab-1=0
a=1,b=1
或者a=-1,b=-1
3、a的平方+b的平方+4a-2b+5=(a+2)的平方+(b-1)的平方=0 所以a=-2,b=1
所以a+b/a-b=1/3
4、x的平方+y的平方+z的平方-2x+4y-6z+14=(x-1)的平方+(y+2)的平方+(z-3)的平方=0 所以x+y+z=1-2+3=2
5、y=x的平方-2x+5=(x-1)的平方+4,所以y的最小值为4
回答者: 逢人坤 - 六级 2007-6-29 10:16
1,设四个连续整数为x-1,x,x+1,x+2,则(x-1)x(x+1)(x+2)+1=(x^2+x-1)^2
2,a^2*b^2+a^2+b^2+1=(a^2+1)*(b^2+1)≥2a*2b=4ab
当且仅当a=b=1
或
a^2*b^2+a^2+b^2+1=(a^2+1)*(b^2+1)≥(-2a)*(-2b)=4ab
当且仅当a=b=-1
所以a=b=1或a=b=-1
3,a^2*b^2+4*a-2*b+5=(a+2)^2+(b-1)^2=0
当且仅当a=-2,b=1成立,所以a+b/a-b=1/3
4,x^2+y^2+z^2-2*x+4*y-6*z+14
=(x-1)^2+(y+2)^2+(z-3)^2
=0
当且仅当x=1,y=-2,z=3成立,所以x+y+z=2
全国甲卷高考数学试卷真题和答案解析[Word文字版]
2009年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅰ)
本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.
3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
参考公式:
如果事件 互斥,那么 球的表面积公式
如果事件 相互独立,那么 其中 表示球的半径
球的体积公式
如果事件 在一次试验中发生的概率是 ,那么
次独立重复试验中恰好发生 次的概率 其中 表示球的半径
一、选择题
(1) 的值为
(A) (B) (C) (D)
解析本小题考查诱导公式、特殊角的三角函数值,基础题。
解: ,故选择A。
(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集 ,则集合 中的元素共有
(A) 3个 (B) 4个 (C)5个 (D)6个
解析本小题考查集合的运算,基础题。(同理1)
解: , 故选A。也可用摩根定律:
(3)不等式 的解集为
(A) (B)
(C) (D)
解析本小题考查解含有绝对值的不等式,基础题。
解: ,
故选择D。
(4)已知tan =4,cot = ,则tan(a+ )=
(A) (B) (C) (D)
解析本小题考查同角三角函数间的关系、正切的和角公式,基础题。
解:由题 , ,故选择B。
(5)设双曲线 的渐近线与抛物线 相切,则该双曲线的离心率等于
(A) (B)2 (C) (D)
解析本小题考查双曲线的渐近线方程、直线与圆锥曲线的位置关系、双曲线的离心率,基础题。
解:由题双曲线 的一条渐近线方程为 ,代入抛物线方程整理得 ,因渐近线与抛物线相切,所以 ,即 ,故选择C。
(6)已知函数 的反函数为 ,则
(A)0 (B)1 (C)2 (D)4
解析本小题考查反函数,基础题。
解:由题令 得 ,即 ,又 ,所以 ,故选择C。
(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
(A)150种 (B)180种 (C)300种 (D)345种
解析本小题考查分类计算原理、分步计数原理、组合等问题,基础题。
解:由题共有 ,故选择D。
(8)设非零向量 、 、 满足 ,则
(A)150° (B)120° (C)60° (D)30°
解析本小题考查向量的几何运算、考查数形结合的思想,基础题。
解:由向量加法的平行四边形法则,知 、 可构成菱形的两条相邻边,且 、 为起点处的对角线长等于菱形的边长,故选择B。
(9)已知三棱柱 的侧棱与底面边长都相等, 在底面 上的射影为 的中点,则异面直线 与 所成的角的余弦值为
(A) (B) (C) (D)
解析本小题考查棱柱的性质、异面直线所成的角,基础题。(同理7)
解:设 的中点为D,连结 D,AD,易知 即为异面直线 与 所成的角,由三角余弦定理,易知 .故选D
(10) 如果函数 的图像关于点 中心对称,那么 的最小值为
(A) (B) (C) (D)
解析本小题考查三角函数的图象性质,基础题。
解: 函数 的图像关于点 中心对称
由此易得 .故选A
(11)已知二面角 为600 ,动点P、Q分别在面 内,P到 的距离为 ,Q到 的距离为 ,则P、Q两点之间距离的最小值为
解析本小题考查二面角、空间里的距离、最值问题,综合题。(同理10)
解:如图分别作
,连
,
又
当且仅当 ,即 重合时取最小值。故答案选C。
(12)已知椭圆 的右焦点为F,右准线 ,点 ,线段AF交C于点B。若 ,则 =
(A) (B) 2 (C) (D) 3
解析本小题考查椭圆的准线、向量的运用、椭圆的定义,基础题。
解:过点B作 于M,并设右准线 与x轴的交点为N,易知FN=1.由题意 ,故 .又由椭圆的第二定义,得 .故选A
2009年普通高等学校招生全国统一考试
文科数学(必修 选修Ⅰ)
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.
2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.
3.本卷共10小题,共90分.
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
(注意:在试题卷上作答无效)
(13) 的展开式中, 的系数与 的系数之和等于_____________.
解析本小题考查二项展开式通项、基础题。(同理13)
解: 因 所以有
(14)设等差数列 的前 项和为 。若 ,则 _______________.
解析本小题考查等差数列的性质、前 项和,基础题。(同理14)
解: 是等差数列,由 ,得
。
(15)已知 为球 的半径,过 的中点 且垂直于 的平面截球面得到圆 ,若圆 的面积为 ,则球 的表面积等于__________________.
解析本小题考查球的截面圆性质、球的表面积,基础题。
解:设球半径为 ,圆M的半径为 ,则 ,即 由题得 ,所以 。
(16)若直线 被两平行线 所截得的线段的长为 ,则 的倾斜角可以是
① ② ③ ④ ⑤
其中正确答案的序号是 .(写出所有正确答案的序号)
解析本小题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想。
解:两平行线间的距离为 ,由图知直线 与 的夹角为 , 的倾斜角为 ,所以直线 的倾斜角等于 或 。故填写①或⑤
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试题卷上作答无效)
设等差数列{ }的前 项和为 ,公比是正数的等比数列{ }的前 项和为 ,已知 的通项公式.
解析本小题考查等差数列与等比数列的通项公式、前 项和,基础题。
解:设 的公差为 ,数列 的公比为 ,
由 得 ①
得 ②
由①②及 解得
故所求的通项公式为 。
(18)(本小题满分12分)(注意:在试用题卷上作答无效)
在 中,内角 的对边长分别为 .已知 ,且 ,求 .
解析本小题考查正弦定理、余弦定理。
解:由余弦定理得 ,
又 ,
,
即 ①
由正弦定理得
又由已知得
,
所以 ②
故由①②解得
(19)(本小题满分12分)(注决:在试题卷上作答无效)
如图,四棱锥 中,底面 为矩形, 底面 , , ,点 在侧棱 上,
(Ⅰ)证明: 是侧棱 的中点;
(Ⅱ)求二面角 的大小。(同理18)
解法一:
(I)
作 ‖ 交 于点E,则 ‖ , 平面SAD
连接AE,则四边形ABME为直角梯形
作 ,垂足为F,则AFME为矩形
设 ,则 ,
由
解得
即 ,从而
所以 为侧棱 的中点
(Ⅱ) ,又 ,所以 为等边三角形,
又由(Ⅰ)知M为SC中点
,故
取AM中点G,连结BG,取SA中点H,连结GH,则 ,由此知 为二面角 的平面角
连接 ,在 中,
所以
二面角 的大小为
解法二:
以D为坐标原点,射线DA为x轴正半轴,建立如图所示的直角坐标系D-xyz
设 ,则
(Ⅰ)设 ,则
又
故
即
解得 ,即
所以M为侧棱SC的中点
(II)
由 ,得AM的中点
又
所以
因此 等于二面角 的平面角
所以二面角 的大小为
(20)(本小题满分12分)(注意:在试题卷上作答无效)
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。
解析本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。
解:记“第 局甲获胜”为事件 ,“第 局乙获胜”为事件 。
(Ⅰ)设“再赛2局结束这次比赛”为事件A,则
,由于各局比赛结果相互独立,故
(Ⅱ)记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而
,由于各局比赛结果相互独立,故
(21)(本小题满分12分)(注意:在试题卷上作答无效)
已知函数 .
(Ⅰ)讨论 的单调性;
(Ⅱ)设点P在曲线 上,若该曲线在点P处的切线 通过坐标原点,求 的方程
解析本小题考查导数的应用、函数的单调性,综合题。
解:(Ⅰ)
令 得 或 ;
令 得 或
因此, 在区间 和 为增函数;在区间 和 为减函数。
(Ⅱ)设点 ,由 过原点知, 的方程为 ,
因此 ,
即 ,
整理得 ,
解得 或
因此切线 的方程为 或
(22)(本小题满分12分)(注意:在试题卷上作答无效)
如图,已知抛物线 与圆 相交于A、B、C、D四个点。
(Ⅰ)求 的取值范围
(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。
解:(Ⅰ)将抛物线 代入圆 的方程,消去 ,
整理得 ①
与 有四个交点的充要条件是:方程①有两个不相等的正根
由此得
解得
又
所以 的取值范围是
(II) 设四个交点的坐标分别为 、 、 、 。
则由(I)根据韦达定理有 ,
则
令 ,则 下面求 的最大值。
方法1:由三次均值有:
当且仅当 ,即 时取最大值。经检验此时 满足题意。
方法2:设四个交点的坐标分别为 、 、 、
则直线AC、BD的方程分别为
解得点P的坐标为 。
设 ,由 及(Ⅰ)得
由于四边形ABCD为等腰梯形,因而其面积
则
将 , 代入上式,并令 ,得
,
∴ ,
令 得 ,或 (舍去)
当 时, ;当 时 ;当 时,
故当且仅当 时, 有最大值,即四边形ABCD的面积最大,故所求的点P的坐标为
高考文科数学知识点总结归纳
一、全国甲卷高考数学试卷真题和答案解析全国甲卷高考数学试卷真题和答案解析正在快马加鞭的整理当真,考试结束后我们第一时间发布word文字版。考生可以在线点击阅览:
二、全国甲卷高考数学卷答题技巧
1.对于会做的题目,要解决"会而不对,对而不全"这个老大难问题.有的考生拿到题目,明明会做,但最终答案却是错的--会而不对.有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤--对而不全.因此,会做的题目要特别注意高考数学解答题答题技巧及题型特点,防止被"分段扣点分".经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以"做不出来的题目得一二分易,做得出来的题目得满分难".
2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分.我们说,有什么样的解题策略,就有什么样的得分策略.把你解题的真实过程原原本本写出来,就是"分段得分"的全部秘密。
(1)缺步解答.如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败.特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分.
(2)跳步答题.解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一"卡壳处".由于考试时间的限制,"卡壳处"的攻克如果来不及了,就可以把前面的写下来,再写出"证实某步之后,继续有……"一直做到底.也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面.若题目有两问,第一问想不出来,可把第一问作"已知","先做第二问",这也是跳步解答.
(3)退步解答."以退求进"是一个重要的解题策略.如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论.总之,退到一个你能够解决的问题.为了不产生"以偏概全"的误解,应开门见山写上"本题分几种情况".这样,还会为寻找正确的、一般性的解法提供有意义的启发.
(4)辅助解答.一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤.实质性的步骤未找到之前,找辅助性的步骤是明智之举.如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等.答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率.试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
考生一定要时刻注意完善自己,努力让解答题的满分,那就一定要仔细阅读高考数学解答题满分答题技巧,预祝考生取得优异的成绩。
三、全国甲卷哪些省份使用
适用地区:云南、广西、贵州、四川、西藏
四、全国甲卷和乙卷的区别
1、乙卷难度比甲卷高。乙卷英语和物理科目能够明显看出来比甲卷难,不过一些学生会觉得甲卷更难一些,这根据学生学习的大体程度去判断。不过乙卷和甲卷都会在高考中使用。
2、乙卷和甲卷使用的省份不同。乙卷使用的省区:山西、河北、河南、安徽、湖北、湖南、江西、福建等等;甲卷使用的省区:陕西、重庆、青海、新疆、吉林、辽宁、内蒙古等等。
3、乙卷和甲卷里面的科目内容也不同。乙卷科目:英语和综合;甲卷科目:数学、语文、英语。 五、全国甲卷高考数学试卷答案解析 (1).2022年全国甲卷高考数学试卷试题难不难,附试卷分析和解答 (2).2019年吉林高考全国甲卷(2卷)理科数学试卷真题难度答案解析(WORD文字版) (3).2019年吉林高考全国甲卷(2卷)文科数学试卷真题难度答案解析(WORD文字版) (4).2019年黑龙江高考全国甲卷(2卷)理科数学试卷真题难度答案解析(WORD文字版) (5).2019年黑龙江高考全国甲卷(2卷)文科数学试卷真题难度答案解析(WORD文字版) (6).2019年贵州高考全国甲卷(2卷)理科数学试卷真题难度答案解析(WORD文字版) (7).2019年贵州高考全国甲卷(2卷)文科数学试卷真题难度答案解析(WORD文字版) (8).2019年高考全国甲卷理科数学试卷试题答案解析(WORD下载) (9).2019年高考全国甲卷文科数学试卷试题答案解析(WORD下载) ;
问一道高考文科数学题!!
对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国新高考Ⅰ卷文科数学试题及答案解析
★ 2022年全国新高考1卷数学试题及答案解析
★ 2022全国新高考Ⅱ卷文科数学试题及答案解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及答案解析
★ 湖北2022高考文科数学试题及答案解析
★ 2022河北高考文科数学试题及答案解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();1.设椭圆方程为:x^/a^ + y^/b^ =1
根据一个焦点是F(2,0),可得:a^-b^=2^=4 ①
则椭圆的两条准线为:x=±a^/2
∴两准线距离为2*(a^/2)=λ
<=>a^=λ
<=>b^=a^-4=λ-4
∴椭圆方程为:x^/λ + y^/(λ-4)=1
2.设F关于l的对称点为B(x1,y1)
根据对称的含义可知:线段FB被直线l垂直平分
设FB与l相交于P,则P必为FB中点,且l⊥FB
设直线l的斜率为k,则有:kFB=-1/kl=-1/k ②
而FB必过F(2,0)
根据点斜式,kFB=-1/k,F(2,0),可得FB的方程为:
FB:y=(-1/k)*(x-2)
而直线l过A(1,0),根据点斜式可得其方程为:
l:y=k(x-1)
联立FB与l的方程,可得两者交点坐标P为:
P((k^+2)/(k^+1),k/(k^+1))
前方已证P为FB中点,则根据中点坐标公式可得出B(x1,y1):
x1=2*xP-xF
y1=2*yP-yF
将P,F点的坐标代入,可得:
x1=2/(k^+1)
y1=2k/(k^+1)
即B(2/(k^+1),2k/(k^+1))
而B点根据题意知在椭圆上,将其带入第一问求出的椭圆方程,并作整理,可得到关于k^的一元二次方程(含λ):
(λ^-4λ)*(k^)^ + (2λ^-12λ)*k^ + (λ-4)^=0
方程必须存在实根,故有:
△=(2λ^-12λ)^-4*(λ^-4λ)*(λ-4)^≥0
<=>λ≤16/3
而方程是关于k^的方程,k^≥0,∴方程的两个实根必然非负,则有:
两根和:-(2λ^-12λ)/(λ^-4λ)≥0
两根积:(λ-4)^/(λ^-4λ)≥0
结合条件λ>4,可得:4<λ≤6
结合③式,可得到λ的取值范围是:
λ∈(4,16/3]