您现在的位置是: 首页 > 热门院校 热门院校

高考理科内容_高考理科知识点总结

tamoadmin 2024-05-19 人已围观

简介1.2022高考物理冲刺知识点总结大全一、力学:1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学

1.2022高考物理冲刺知识点总结大全

高考理科内容_高考理科知识点总结

一、力学:

1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);

2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;

3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。

4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。

同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。

6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。

7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。

8、17世纪,德国天文学家开普勒提出开普勒三大定律;

9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。

9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;

俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。

10、1957年10月,苏联发射第一颗人造地球卫星;

1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。

二、相对论:

13、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),

②热辐射实验——量子论(微观世界);

14、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。

15、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

16、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;

17、激光——被誉为20世纪的“世纪之光”;

选修部分:

三、电磁学:

理科班(选修3-1):

18、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。

19、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。

20、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

21、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

22、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

23、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

24、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。

25、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。

26、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。

27、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

28、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。

29、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。

30、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。

(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同)

物理X科(3-2至3-5 ):

三、电磁学:

31、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。

32、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。

32、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。

四、热学(选做):

33、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。

34、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。

35、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。

36、1848年 开尔文提出热力学温标,指出绝对零度是温度的下限。

五、波动学(选做):

33、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。

34、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。

35、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。

36、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

37、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。

38、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。

39、1800年,英国物理学家赫歇耳发现红外线;

1801年,德国物理学家里特发现紫外线;

1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。

六、光学(选做):

40、1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。

41、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。

42、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射——泊松亮斑。

43、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;

1887年,赫兹证实了电磁波的存在,光是一种电磁波

44、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:

①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;

②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。

45、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。

七、波粒二向性:

46、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。

47、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。

48、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。

49、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;

1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。

八、原子物理学:

50、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。

51、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。

52、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。

53、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。

54、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15m。

55、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。

56、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;

57、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。

天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。

58、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。

59、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,

并预言原子核内还有另一种粒子——中子。

60、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。

61、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。

62、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。63、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。

64、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。

1964年提出夸克模型;

65、粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;

轻子-不参与强相互作用的粒子,如:电子、中微子;

强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子

2022高考物理冲刺知识点总结大全

第一讲 平衡问题

一、特别提示[解平衡问题几种常见方法]

1、力的合成、分解法:对于三力平衡,一般根据“任意两个力的合力与第三力等大反向”的关系,借助三角函数、相似三角形等手段求解;或将某一个力分解到另外两个力的反方向上,得到这两个分力必与另外两个力等大、反向;对于多个力的平衡,利用先分解再合成的正交分解法。

2、力汇交原理:如果一个物体受三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必有共点力。

3、正交分解法:将各力分解到 轴上和 轴上,运用两坐标轴上的合力等于零的条件 多用于三个以上共点力作用下的物体的平衡。值得注意的是,对 、 方向选择时,尽可能使落在 、 轴上的力多;被分解的力尽可能是已知力。

4、矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接恰好构成三角形,则这三个力的合力必为零,利用三角形法求得未知力。

5、对称法:利用物理学中存在的各种对称关系分析问题和处理问题的方法叫做对称法。在静力学中所研究对象有些具有对称性,模型的对称往往反映出物体或系统受力的对称性。解题中注意到这一点,会使解题过程简化。

6、正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。

7、相似三角形法:利用力的三角形和线段三角形相似。

二、典型例题

1、力学中的平衡:运动状态未发生改变,即 。表现:静止或匀速直线运动

(1)在重力、弹力、摩擦力作用下的平衡

例1 质量为 的物体置于动摩擦因数为 的水平面上,现对它施加一个拉力,使它做匀速直线运动,问拉力与水平方向成多大夹角时这个力最小?

解析 取物体为研究对象,物体受到重力 ,地面的支持力N,摩擦力 及拉力T四个力作用,如图1-1所示。

由于物体在水平面上滑动,则 ,将 和N合成,得到合力F,由图知F与 的夹角:

不管拉力T方向如何变化,F与水平方向的夹角 不变,即F为一个方向不发生改变的变力。这显然属于三力平衡中的动态平衡问题,由前面讨论知,当T与F互相垂直时,T有最小值,即当拉力与水平方向的夹角 时,使物体做匀速运动的拉力T最小。

(2)摩擦力在平衡问题中的表现

这类问题是指平衡的物体受到了包括摩擦力在内的力的作用。在共点力平衡中,当物体虽然静止但有运动趋势时,属于静摩擦力;当物体滑动时,属于动摩擦力。由于摩擦力的方向要随运动或运动趋势的方向的改变而改变,静摩擦力大小还可在一定范围内变动,因此包括摩擦力在内的平衡问题常常需要多讨论几种情况,要复杂一些。因此做这类题目时要注意两点

①由于静摩擦力的大小和方向都要随运动趋势的改变而改变,因此维持物体静止状态所需的外力允许有一定范围;又由于存在着最大静摩擦力,所以使物体起动所需要的力应大于某一最小的力。总之,包含摩擦力在内的平衡问题,物体维持静止或起动需要的动力的大小是允许在一定范围内的,只有当维持匀速运动时,外力才需确定的数值。

②由于滑动摩擦力F= ,要特别注意题目中正压力的大小的分析和计算,防止出现错误。

例2 重力为G的物体A受到与竖直方向成 角的外力 F后,静止在竖直墙面上,如图1-2所示,试求墙对物体A的静摩擦力。

分析与解答 这是物体在静摩擦力作用下平衡问题。首先确定研究对象,对研究对象进行受力分析,画出受力图。A受竖直向下的重力G,外力F,墙对A水平向右的支持力(弹力)N,以及还可能有静摩擦力 。这里对静摩擦力的有无及方向的判断是极其重要的。物体之间有相对运动趋势时,它们之间就有静摩擦力;物体间没有相对运动趋势时,它们之间就没有静摩擦力。可以假设接触面是光滑的,若不会相对运动,物体将不受静摩擦力,若有相对运动就有静摩擦力。(注意:这种假设的方法在研究物理问题时是常用方法,也是很重要的方法。)具体到这个题目,在竖直方向物体A受重力G以及外力F的竖直分量,即 。当接触面光滑, 时,物体能保持静止;当 时,物体A有向下运动的趋势,那么A应受到向上的静摩擦力;当 时,物体A则有向上运动的趋势,受到的静摩擦力的方向向下,因此应分三种情况说明。

从这里可以看出,由于静摩擦力方向能够改变,数值也有一定的变动范围,滑动摩擦力虽有确定数值,但方向则随相对滑动的方向而改变,因此,讨论使物体维持某一状态所需的外力F的许可范围和大小是很重要的。何时用等号,何时用不等号,必须十分注意。

(3)弹性力作用下的平衡问题

例3 如图1-3所示,一个重力为 的小环套在竖直的半径为 的光滑大圆环上,一劲度系数为k,自然长度为L(L<2r)弹簧的一端固定在小环上,另一端固定在大圆环的最高点A。当小环静止时,略去弹簧的自重和小环与大圆环间的摩擦。求弹簧与竖直方向之间的夹角

分析 选取小环为研究对象,孤立它进行受力情况分析:小环受重力 、大圆环沿半径方向的支持力N、弹簧对它的拉力F的作用,显然,

解法1 运用正交分解法。如图1-4所示,选取坐标系,以小环所在位置为坐标原点,过原点沿水平方向为 轴,沿竖直方向为 轴。

解得

解法2 用相似比法。若物体在三个力F1、F2、F3作用下处于平衡状态,这三个力必组成首尾相连的三角形F1、F2、F3,题述中恰有三角形AO 与它相似,则必有对应边成比例。

(4)在电场、磁场中的平衡

例4 如图1-5所示,匀强电场方向向右,匀强磁场方向垂直于纸面向里,一质量为 带电量为q的微粒以速度 与磁场垂直、与电场成45?角射入复合场中,恰能做匀速直线运动,求电场强度E的大小,磁感强度B的大小。

解析 由于带电粒子所受洛仑兹力与 垂直,电场力方向与电场线平行,知粒子必须还受重力才能做匀速直线运动。假设粒子带负电受电场力水平向左,则它受洛仑兹力 就应斜向右下与 垂直,这样粒子不能做匀速直线运动,所以粒子应带正电,画出受力分析图根据合外力为零可得,

(1) (2)

由(1)式得 ,由(1),(2)得

(5)动态收尾平衡问题

例5 如图1-6所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为 ,导轨平面与水平面的夹角为 。在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B。在导轨的A、C端连接一个阻值为R的电阻。一根垂直于导轨放置的金属棒 ,质量为 ,从静止开始沿导轨下滑。求 棒的最大速度。(已知 和导轨间的动摩擦因数为 ,导轨和金属棒的电阻不计)

解析 本题的研究对象为 棒,画出 棒的平面受力图,如图1-7。 棒所受安培力F沿斜面向上,大小为 ,则 棒下滑的加速度

棒由静止开始下滑,速度 不断增大,安培力F也增大,加速度 减小。当 =0时达到稳定状态,此后 棒做匀速运动,速度达最大。

解得 棒的最大速度

例6 图1-8是磁流体发电机工作原理图。磁流体发电机由燃烧室(O)、发电通道(E)和偏转磁场(B)组成。在2500K以上的高温下,燃料与氧化剂在燃烧室混合、燃烧后,电离为正负离子(即等离子体),并以每秒几百米的高速喷入磁场,在洛仑兹力的作用下,正负离子分别向上、下极板偏转,两极板因聚积正负电荷而产生静电场。这时等离子体同时受到方向相反的洛仑兹力( )与电场力(F)的作用,当F= 时,离子匀速穿过磁场,两极板电势差达到最大值,即为电源的电动势。设两板间距为d,板间磁场的磁感强度为B,等离子体速度为 ,负载电阻为R,电源内阻不计,通道截面是边长为d的正方形,试求:

(1)磁流体发电机的电动势 ?

(2)发电通道两端的压强差 ?

解析 根据两板电势差最大值的条件

所以,磁流发电机的电动势为

设电源内阻不计,通道横截面边长等于 的正方形,且入口处压强为 ,出口处的压强为 ;当开关S闭合后,发电机电功率为

根据能量的转化和守恒定律有

所以,通道两端压强差为

(6)共点的三力平衡的特征规律

例7 图1-9中重物的质量为 ,轻细线AO和BO的A、B端是固定的,平衡时AD是水平的,BO与水平的夹角为 。AO的拉力F1和BO的拉力F2的大小是:

A、 B、

C、 D、

解析 如图1-10,三根细绳在O点共点,取O点(结点)为研究对象,分析O点受力如图1-10。O点受到AO绳的拉力F1、BO绳的拉力F2以及重物对它的拉力T三个力的作用。

图1-10(a)选取合成法进行研究,将F1、F2合成,得到合力F,由平衡条件知:

则:

图1-10(b)选取分解法进行研究,将F2分解成互相垂直的两个分力 、 ,由平衡条件知:

则:

问题:若BO绳的方向不变,则细线AO与BO绳的方向成几度角时,细线AO的拉力最小?

结论:共点的三力平衡时,若有一个力的大小和方向都不变,另一个力的方向不变,则第三个力一定存在着最小值。

(7)动中有静,静中有动问题

如图1-11所示,质量为M的木箱放在水平面上,木箱中的立杆上着一个质量为 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的二分之一,则在小球下滑的过程中,木箱对地面的压力为 。因为球加速下滑时,杆受向上的摩擦力 根据第二定律有 ,所以 。对木箱进行受力分析有:重力 、地面支持力N、及球对杆向下的摩擦力 。由平衡条件有 。

2、电磁学中的平衡

(1)电桥平衡

若没有R,则R1和R2串联后与R3和R4串联后再并联

设通过R1的电流为I1,通过R3的电流I2

如有:I1R1=I2R3,I1R2=I2R4 则R两端电势差为0所以R中的电流为0,即电桥平衡。

(2)静电平衡

例8 一金属球,原来不带电。现沿球的直径的延长线放置一均匀带电的细杆MN,如图1-12所示。金属球上感应电荷产生的电场在球内直径上 、 、 三点的场强大小分别为 、 、 ,三者相比,

A、 最大 B、 最大 C、 最大 D、 = =

解析:

当金属球在带电杆激发的电场中达到以静电平衡时,其内部的场强为0,即细杆在 、 、 产生的场强与金属球上的感应电荷在 、 、 产生的场强大小相等,方向相反,故答案C正确。

3、热平衡问题

例9 家电电热驱蚊器中电热部分的主要元件是PTC,它是由钛酸钡等半导体材料制成的电阻器,其电阻率 与温度 的个关系图象如图1-13。电热驱蚊器的原理是:通电后电阻器开始发热,温度上升,使药片散发出驱蚊药,当电热器产生的热与向外散发的热平衡时,温度达到一个稳定值。由图象可以判定:通电后,PTC电阻器的功率变化情况是 ,稳定时的温度应取 区间的某一值。

分析 通电后应认为电压U不变。随着温度的升高,在(0~t1)范围内,电阻率随温度的升高而减小,因此电阻减小,电功率增大,驱蚊器温度持续上升;在(t1~t2)范围内,电阻率随温度的升高而增大,因此电阻增大,电功率减小。当电热器产生的热与向外散发的热平衡时,温度、电阻、电功率都稳定在某一值。

解答 功率变化是先增大后减小,最后稳定在某一值。这时温度应在t1~t2间。

第二讲 匀变速运动

一、特别提示:

1、匀变速运动是加速度恒定不变的运动,从运动轨迹来看可以分为匀变速直线运动和匀变速曲线运动。

2、从动力学上看,物体做匀变速运动的条件是物体受到大小和方向都不变的恒力的作用。匀变速运动的加速度由牛顿第二定律决定。

3、原来静止的物体受到恒力的作用,物体将向受力的方向做匀加速直线运动;物体受到和初速度方向相同的恒力,物体将做匀速直线运动;物体受到和初速度方向相反的恒力,物体将做匀减速直线运动;若所受到的恒力方向与初速度方向有一定的夹角,物体就做匀变速曲线运动。

二、典型例题:

例1 气球上吊一重物,以速度 从地面匀速竖直上升,经过时间t重物落回地面。不计空气对物体的阻力,重力离开气球时离地面的高度为多少。

解 方法1:设重物离开气球时的高度为 ,对于离开气球后的运动过程,可列下面方程: ,其中(-hx表示)向下的位移 , 为匀速运动的时间, 为竖直上抛过程的时间,解方程得: ,于是,离开气球时的离地高度可在匀速上升过程中求得,为:

方法2:将重物的运动看成全程做匀速直线运动与离开气球后做自由落体运动的合运动。显然总位移等于零,所以:

解得:

评析 通过以上两种方法的比较,更深入理解位移规律及灵活运用运动的合成可以使解题过程更简捷。

例2 两小球以95m长的细线相连。两球从同一地点自由下落,其中一球先下落1s另一球才开始下落。问后一球下落几秒线才被拉直?

解 方法1:“线被拉直”指的是两球发生的相对位移大小等于线长,应将两球的运动联系起来解,设后球下落时间为ts,则先下落小球运动时间为(t+1)s,根据位移关系有:

解得:t=9s

方法2:若以后球为参照物,当后球出发时前球的运动速度为 。以后两球速度发生相同的改变,即前一球相对后一球的速度始终为 ,此时线已被拉长:

线被拉直可看成前一球相对后一球做匀速直线运动发生了位移:

评析 解决双体或多体问题要善于寻找对象之间的运动联系。解决问题要会从不同的角度来进行研究,如本题变换参照系进行求解。

例3 如图2-1所示,两个相对斜面的倾角分别为37°和53°,在斜面顶点把两个小球以同样大小的初速度分别向左、向右水平抛出,小球都落在斜面上。若不计空气阻力,则A、B两个小球的运动时间之比为( )

A、1:1 B、4:3 C、16:9 D\9:16

解 由平抛运动的位移规律可行:

∵ ∴

故D选项正确。

评析 灵活运用平抛运动的位移规律解题,是基本方法之一。应用时必须明确各量的物理意义,不能盲目套用公式。

例4 从空中同一地点沿水平方向同时抛出两个小球,它们的初速度方向相反、大小分别为 ,求经过多长时间两小球速度方向间的夹角为90°?

解 经过时间t,两小球水平分速度 、 不变,竖直分速度都等于 ,如图2-2所示,t时刻小球1的速度 轴正向夹角 为

小球2的速度 轴正向夹角 为

由图可知

联立上述三式得

评析 弄清平抛运动的性质与平抛运动的速度变化规律是解决本题的关键。

例5 如图2-3所示,一带电粒子以竖直向上的初速度 ,自A处进入电场强度为E、方向水平向右的匀强电场,它受到的电场力恰与重力大小相等。当粒子到达图中B处时,速度大小仍为 ,但方向变为水平向右,那么A、B之间的电势差等于多少?从A到B经历的时间为多长?

解 带电粒子从A→B的过程中,竖直分速度减小,水平分速度增大,表明带电粒子的重力不可忽略,且带正电荷,受电场力向右。依题意有

根据动能定理:

在竖直方向上做竖直上抛运动,则

解得: 。

评析 当带电粒子在电场中的运动不是类平抛运动,而是较复杂的曲线运动时,可以把复杂的曲线运动分解到两个互相正交的简单的分运动来求解。

例6 如图2-4所示,让一价氢离子、一价氦离子和二价氦离子的混合物由静止经过同一加速电场加速,然后在同一偏转电场里偏转,它们是否会分成三股?请说明理由。

解 设带电粒子质量为 、电量为q,经过加速电场加速后,再进入偏转电场中发生偏转,最后射出。设加速电压为 U1,偏转电压为U2,偏转电极长为L,两极间距离为d,带电粒子由静止经加速电压加速,则U1q= , 。

带电粒子进入偏转电场中发生偏转,则水平方向上: ,

竖直方向上: 。

可见带电粒子射出时,沿竖直方向的偏移量 与带电粒子的质量 和电量q无关。而一价氢离子、一价氦离子和二价氦离子,它们仅质量或电量不相同,都经过相同的加速和偏转电场,故它们射出偏转电场时偏移量相同,因而不会分成三股,而是会聚为一束粒子射出。

评析 带电粒子在电场中具有加速作用和偏转作用。分析问题时,注意运动学、动力学、功和能等有关规律的综合运用。

第三讲 变加速运动

一、特别提示

所谓变加速运动,即加速度(大小或方向或两者同时)变化的运动,其轨迹可以是直线,也可以是曲线;从牛顿第二定律的角度来分析,即物体所受的合外力是变化的。

本章涉及的中学物理中几种典型的变加速运动如:简谐运动,圆周运动,带电粒子在电场、磁场和重力场等的复合场中的运动,原子核式结构模型中电子绕原子核的圆周运动等。故涉及到力学、电磁学及原子物理中的圆周运动问题。

二、典型例题

例1 一电子在如图3-1所示按正弦规律变化的外力作用下由静止释放,则物体将:

A、作往复性运动

B、t1时刻动能最大

C、一直朝某一方向运动

D、t1时刻加速度为负的最大。

评析 电子在如图所示的外力作用下运动,根据牛顿第二定律知,先向正方向作加速度增大的加速运动,历时t1;再向正方向作加速度减小的加速运动,历时(t2~t1);(0~t2)整段时间的速度一直在增大。紧接着在(t2~t3)的时间内,电子将向正方向作加速度增大的减速运动,历时(t3~t2);(t3~t4)的时间内,电子向正方向作加速度减小的减速运动,根据对称性可知,t4时刻的速度变为0(也可以按动量定理得,0~t4时间内合外力的冲量为0,冲量即图线和坐标轴围成的面积)。其中(0~t2)时间内加速度为正;(t2~t4)时间内加速度为负。正确答案为:C。

注意 公式 中F、 间的关系是瞬时对应关系,一段时间内可以是变力;而公式 或 只适用于匀变速运动,但在变加速运动中,也可以用之定性地讨论变加速运动速度及位移随时间的变化趋势。

上题中,如果F-t图是余弦曲线如图3-2所示,则情况又如何?

如果F-t图是余弦曲线,则答案为A、B。

例2 如图3-3所示,两个完全相同的小球 和 ,分别在光滑的水平面和浅凹形光滑曲面上滚过相同的水平距离,且始终不离开接触面。 球是由水平面运动到浅凹形光滑曲线面,再运动到水平面的,所用的时间分别为t1和t2,试比较t1、t2的大小关系:

A、t1>t2 B、t1=t2 C、t1<t2 D、无法判定

评析 小球滚下去的时候受到凹槽对它的支持力在水平向分力使之在水平方向作加速运动;而后滚上去的时候凹槽对它的支持力在水平方向分力使之在水平方向作减速运动,根据机械能守恒定律知,最后滚到水平面上时速度大小与原来相等。故 小球在整个过程中水平方向平均速度大,水平距离一样,则 所用时间短。答案:A。

例3 如图3-4所示,轻弹簧的一端固定在地面上,另一端与木块B相连。木块A放在B上。两木块质量均为 ,竖直向下的力F作用在A上,A、B均静止,问:

(1)将力F瞬间撤去后,A、B共同运动到最高点,此时B对A的弹力多大?

(2)要使A、B不会分开、力F应满足什么条件?

评析 (1)如果撤去外力后,A、B在整个运动过程中互不分离,则系统在竖直向上作简揩运动,最低点和最高点关于平衡位置对称,如图3-5所示,设弹簧自然长度为 ,A、B放在弹簧上面不外加压力F且系统平衡时,如果弹簧压至O点,压缩量为b,则: 。外加压力F后等系统又处于平衡时,设弹簧又压缩了A,则: ,即: 。

当撤去外力F后,系统将以O点的中心,以A为振幅在竖直平面内上下作简谐运动。在最低点: ,方向向上,利用牛顿第二定律知,该瞬间加速度: ,方向向上;按对称性知系统在最高点时: ,方向向下。

此时以B为研究对象进行受力分析,如图3-6所示,按牛顿第二定律得:

(2)A、B未分离时,加速度是一样的,且A、B间有弹力,同时最高点最容易分离。分离的临界条件是: (或者:在最高点两者恰好分离时对A有: ,表明在最高点弹簧处于自然长度时将要开始分离,即只要: 时A、B将分离)。所以要使A、B不分离,必须: 。

例4 如图3-7所示,在空间存在水平方向的匀强磁场(图中未画出)和方向竖直向上的匀强电场(图中已画出),电场强度为E,磁感强度为B。在某点由静止释放一个带电液滴 ,它运动到最低点恰与一个原来处于静止状态的带电液滴b相撞,撞后两液滴合为一体,并沿水平方向做匀速直线运动,如图所示,已知 的质量为b的2倍, 的带电量是b的4倍(设 、b间静电力可忽略)。

(1)试判断 、b液滴分别带何种电荷?

(2)求当 、b液滴相撞合为一体后,沿水平方向做匀速直线的速度 及磁场的方向;

(3)求两液滴初始位置的高度差 。

评析 (1)设b质量为 ,则 带电量为4q,因为如果 带正电, 要向下偏转,则必须: ;而对b原来必须受力平衡,则: 。前后相矛盾,表明 带负电,b带正电。

(2)设 为 与b相撞前 的速度, 下落的过程中重力、电场力做正功,由动能定理有: 。由于b原来处于静止状态: 。

由以上两式可得:

、b相撞的瞬间动量守恒: 。得

而电荷守恒,故:

、b碰撞后粘在一起做匀速直线运动,按平衡条件得: ,则: 。所以:

例5 如图3-8所示,一单匝矩形线圈边长分别为 、b,电阻为R,质量为m,从距离有界磁场边界 高处由静止释放,试讨论并定性作出线圈进入磁场过程中感应电流随线圈下落高度的可能变化规律。

评析 线圈下落高度时速度为:

下边刚进入磁场时切割磁感线产生的感应电动势: 。产生的感应电流:I= ,受到的安培力:

讨论 (1)如果 ,即: ,则:线圈将匀速进入磁场,此时: (变化规律如图3-9所示)

(2)如果 ,表明 较小,则:线圈加速进入磁场,但随着 有三种可能:

①线圈全部进入磁场时还未达到稳定电流I0(变化规律如图3-10所示)

②线圈刚全部进入磁场时达到稳定电流I0(变化规律如图3-11所示)

③线圈未全部进磁场时已达到稳定电流I0(变化规律如图3-12所示)

(3)如果 ,则:线圈减速进入磁场,但随着 ,故线圈将作 减小的减速运动。

有三种可能:

①线圈全部进入磁场时还未达到稳定电流I0(变化规律如图3-13所示)

②线圈刚全部进入磁场时达到稳定电流I0(变化规律如图3-14所示)

③线圈未全部进入磁场时已达到稳定电流I0(变化规律如图3-15所示)

例6 光从液面到空气时的临界角C为45°,如图3-16所示,液面上有一点光源S发出一束光垂直入射到水平放置于液体中且到液面的距离为d的平面镜M上,当平面镜M绕垂直过中心O的轴以角速度 做逆时针匀速转动时,观察者发现水面上有一光斑掠过,则观察者们观察到的光斑的光斑在水面上掠过的最大速度为多少?

评析 本题涉及平面镜的反射及全反射现象,需综合运用反射定律、速度的合成与分解、线速度与角速度的关系等知识求解,确定光斑掠移速度的极值点及其与平面镜转动角速度间的关系,是求解本例的关键。

设平面镜转过 角时,光线反射到水面上的P点,光斑速度为 ,如图3-17可知: ,而:

故: , ,而光从液体到空气的临界角为C,所以当 时达到最大值 ,即:

例7 如图3-18所示为一单摆的共振曲线,则该单摆的摆长约为多少?共振时单摆的振幅多大?共振时摆球简谐运动的最大加速度和最大速度大小各为多少?( 取10m/s2)

评析 这是一道根据共振曲线所给信息和单摆振动规律进行推理和综合分析的题目,本题涉及到的知识点有受迫振动、共振的概念和规律、单摆摆球做简谐运动及固有周期、频率、能量的概念和规律等。由题意知,当单摆共振时频率 ,即: ,振幅A=8cm=0.08m,由 得:

如图3-19所示,摆能达到的最大偏角 的情况下,共振时: ,(其中 以弧度为单位,当 很小时, ,弦A近似为弧长。)所以: 。根据单摆运动过程中机械能守恒可得: 。其中:

例8 已知物体从地球上的逃逸速度(第二宇宙速度) ,其中G、ME、RE分别是引力常量、地球的质量和半径。已知G=6.7×10-11N?m2/kg2,c=3.0×108m/s,求下列问题:(1)逃逸速度大于真空中光速的天体叫做黑洞,设某黑洞的质量等于太阳的质量M=2.0×1030kg,求它的可能最大半径(这个半径叫Schwarhid半径);(2)在目前天文观测范围内,物质的平均密度为10-27kg/m3,如果认为我们的宇宙是这样一个均匀大球体,其密度使得它的逃逸速度大于光在真空中的速度c,因此任何物体都不能脱离宇宙,问宇宙的半径至少多大?(最后结果保留两位有效数字)

解析 (1)由题目所提供的信息可知,任何天体均存在其所对应的逃逸速度 ,其中M、R为天体的质量和半径,对于黑洞模型来说,其逃逸速度大于真空中的光速,即 ,所以:

即质量为 kg的黑洞的最大半径为 (m)

(2)把宇宙视为一普通天体,则其质量为 ,其中R为宇宙的半径, 为宇宙的密度,则宇宙所对应的逃逸速度为 ,由于宇宙密度使得其逃逸速度大于光速c。即: 。则由以上三式可得: ,合4.2×1010光年。即宇宙的半径至少为4.2×1010光年。

电动机的最大输出功率为

可用于

高中物理有很多公式,经过高中三年的学习相信大家都有很多物理知识点需要 总结 .接下来是我为大家整理的2022高考物理冲刺知识点总结大全,希望大家喜欢!

目录

2022高考物理冲刺知识点

高考物理必考知识点

高三如何快速提高物理成绩

2022高考物理冲刺知识点

法拉第电磁反应

电学问题时高中物理学习的一个重点,同时也是一个难点。在考试中一定会有这个问题的出现。各位同学再做高中物理有关法拉第电磁感应部分的题时可以按照以下步骤进行:

1、根据感应电流产的条件分析是否有感应电流产生,如果有分析感应电流的方向,

2、弄懂法拉第电磁感应定律中几个公式运用的条件:

A、EDD=/f

注意: 1)该式普遍适用于求平均感应电动势。

2)E只与穿过电路的磁通量的变化率DDf/t有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。

B、qsinBlvE=

要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l^B )。

2)q为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直于B方向上的投影)。

公式BlvE=一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势

C、 E=SBnEm面积为S的纸圈,共n匝,在匀强磁场B中,以角速度w匀速转坳,其转轴与磁

场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势mE。

以上两部分知识是高中物理最难得两部分知识。各位同学在学习高中物理时即使不能全部学懂,也要知道遇到来年各种问题的解题思路,这样可以也帮助各位同学取得一些分数.

考点1:从受力确定运动情况

牛顿第二定律的内容是F=ma,这个公式搭建起了力与运动之间的关系。

我们可以通过对物体进行受力分析,研究其合外力,在通过牛顿第二定律F=ma,求出物体的加速度,进而分析物体的运动情况。

比如,求解物体在某个时刻的位移大小,速度大小,等等。

考点2:从运动情况确定受力

同样,我们也可以从运动学角度出发,通过题中的已知条件,结合匀变速直线运动的知识及公式,求解出物体的加速度a,进而再通过受力分析,来求解出某个力的大小。

比如,我们已知斜面上某物体在运动,已知某些运动条件,来求解摩擦力的大小,进而求解滑动摩擦系数μ。

牛顿运动定律的基本解题步骤

(1)明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为mi,对应的加速度为ai,则有:F合=m1a1+m2a2+m3a3+……+mnan对此结论的证明:分别以质点组中的每个物体为研究对象用牛顿第二定律:∑F1=m1a1,∑F2=m2a2,……∑Fn=mnan,将以上各式等号左、右分别相加,左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F合。

(2)对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。

(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。

(4)当研究对象在研究过程的不同阶段受力情况有变化时,必须分阶段进行受力分析,分阶段列方程求解。另外解题中要注意临界条件的分析。凡是题目中出现“刚好”、“恰好”等字样的,往往要利用临界条件。所谓“临界”,就是物体处于两种不同的状态之间,可以认为它同时具有两种状态下的所有性质。在列方程时,要充分利用这种两重性。

物体平衡条件

(1)平衡状态:物体处于静止或匀速直线运动状态。

一个物体在共点力的作用下,如果保持静止或者做匀速直线运动,我们就说这个物体处于平衡状态。

由此可见,平衡状态分两种情况:

一种是静态平衡,此时,物体运动的速度v=0,物体的加速度a=0;

另一种状态是动态平衡,此时,物体运动的速度v≠0,物体的加速度a=0。

(2)物体处于平衡状态,其受力必须满足合外力为零,即F合=0,加速度=0.这就是共点力作用下物体的平衡条件。

拉密定理

如果物体在三个共点力作用下处于平衡状态,那么这个力的大小分别与另外两个力的夹角的正弦成正比。

平衡条件的推论

(1)二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对反力。

(2)三力平衡:如果物体在三个力的作用下处在平衡状态,那么这三个力不是平行的话就必共点,而且其中两个力的合力必与第三个力大小相等、方向相反。

根据这个特点,我们求解三力平衡问题时,常用的 方法 是力的合成法,当然也可以用分解法(包括正交分解)、力的矢量三角形法和相似三角形法等。

(3)多力平衡:如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的合力大小相等、方向相反。

1.力是物体对物体的作用。⑴力不能脱离物体而独立存在。⑵物体间的作用是相互的。

2.力的三要素:力的大小、方向、作用点。

3.力作用于物体产生的两个作用效果。使受力物体发生形变或使受力物体的运动状态发生改变。

4.力的分类:

⑴按照力的性质命名:重力、弹力、摩擦力等。

⑵按照力的作用效果命名:拉力、推力、压力、支持力、动力、阻力、浮力、向心力等。

5、重力(A)

1.重力是由于地球的吸引而使物体受到的力

⑴地球上的物体受到重力,施力物体是地球。⑵重力的方向总是竖直向下的。

2.重心:物体的各个部分都受重力的作用,但从效果上看,我们可以认为各部分所受重力的作用都集中于一点,这个点就是物体所受重力的作用点,叫做物体的重心。

①质量均匀分布的有规则形状的均匀物体,它的重心在几何中心上。

②一般物体的重心不一定在几何中心上,可以在物体内,也可以在物体外。一般采用悬挂法。

3.重力的大小:G=mg

6、弹力(A)

1.弹力

⑴发生弹性形变的物体,会对跟它接触的物体产生力的作用,这种力叫做弹力。

⑵产生弹力必须具备两个条件:①两物体直接接触;②两物体的接触处发生弹性形变。

2.弹力的方向:物体之间的正压力一定垂直于它们的接触面。绳对物体的拉力方向总是沿着绳而指向绳收缩的方向,在分析拉力方向时应先确定受力物体。

3.弹力的大小:弹力的大小与弹性形变的大小有关,弹性形变越大,弹力越大.

弹簧弹力:F=Kx(x为伸长量或压缩量,K为劲度系数)

4.相互接触的物体是否存在弹力的判断方法:如果物体间存在微小形变,不易觉察,这时可用假设法进行判定.

>>>

高考物理必考知识点

示波器的使用

1.原理:

(1)示波管是其核心部件,还有相应的电子线路。

(2)示波管的原理:用在_ ’方向所加的锯齿波电压来使打在荧光屏上的电子位置距中心之距与时间成正比(好象一光点在屏上在水平方向上做周期性的匀速运动---这称为扫描,以使此距离来模拟时间轴(类似于砂摆的方法);在YY‘上加上所要研究的外加电压(信号从Y输入和地之间输入),则就可在屏上显示出外加电压的波形了。

2. 使用的一般步骤:

(1)先预调:反时针旋转辉度旋钮到底,竖直和水平位移转到中间,衰减置于最高档,扫描置于“外X档”

(2)再开电源,指示灯亮后等待一两分钟进行预热后再进行相关的操作

(3)先调辉度,再调聚焦,进而调水平和竖直位移使亮点在中心合适区域

(4)调扫描、扫描微调和X增益,观察扫描

(5)把外X档拔开到扫描范围档合适处,观察机内提供的竖直方向按正余弦规律变化的电压波形

(6)把待研究的外加电压由Y输入和地间接入示波器,调节各档到合适位置,可观察到此电压的波形(与时间变化的图象)(调同步极性开关可使图象的起点从正半周或负半周开始

(7)如欲观察亮斑(如外加一直流电压时)的竖直偏移,可把扫描调节到“外X”档。

3. 注意事项:

(1)注意使用步骤,不要一开始就开电源,而应先预调,再预热,而后才能进行正常的调节

(2)在正常观察待测电压时,应把扫描开关拔到扫描档且外加电压由Y输入和地之间输入,此时X X‘电压为机内自带的扫描电压以模拟时间轴,只有需单独在_ ‘上另加输入电压时,才将开关拔到外X档。

(3)练习使用多用电表

①选择合适的倍率档后,先电阻调零,再红、黑表笔并接在待测电阻两端,进行测量每次换档必须重新电阻调零。

②选择合适的倍率档,使指针在中值电阻附近时误差较小。

③测电阻时要把选择开关置于“W”档。

④不能用两手同时握住两表笔金属部分测电阻。

⑤测电阻前,必须把待测电阻同 其它 电路断开。

⑥测完电阻,要拔出表笔,并把选择开关置于“OFF”档或交流电压最高档。

⑦测量电阻时,若指针偏角过小,应换倍率较大的档进行测量;若指针偏角过大,应换倍率较小的档进行测量。

⑧欧姆表内的电池用旧了,用此欧姆表测得的电阻值比真实值偏大。

>>>

高三如何快速提高物理成绩

注重基础知识的复习

高三学生想要提高物理成绩,首先就需要对于物理的基础知识进行一定的复习,并且复习也要每隔一段时间复习一次,这样才能够快速并且有效的提高物理成绩,有很多高三学生经常没日没夜的学习,他们的学习成绩可能很好,但这个方法并不适合于所有人,所以,学习物理也要掌握一个适合自己的 学习方法 ,这样才能够最大效率的提高物理成绩。

多做一些有代表性的习题

在物理的做题训练中,有很多高三学生只是一味的追求做题量,其实想要提高物理成绩,搞题海战术的效果并不明显,应该多做一些有代表性的精选题目,这样对于物理知识的理解和应用能力都会有非常显著的提高,如果能够将物理的一些典型题目理解透彻,并且能够做到举一反三,这就是对于物理学习的一种提升,想要提高物理成绩自然不是难事。并且,也要根据教材中的知识点进行一定的归纳总结。

对于物理错题进行整理

在物理做题训练的时候,难免会有一些错误,这些错误也是提升物理学习成绩的一个关键点,想要提高物理的学习成绩,将这些错题进行整理,并且理解透彻,将这些记录下来的错题多进行复习,对于 高三物理 的成绩来说也是一个非常好的提升办法。

>>>

2022高考物理冲刺知识点总结大全相关 文章 :

★ 2022年高考百日誓师大会主题演讲稿5篇

★ 高中教学个人总结范文10篇

★ 2022高考物理知识点归纳总结

★ 2022高考物理知识点总结

★ 2022教师个人年终工作总结最新10篇

★ 2022年高考物理知识点梳理

★ 2022年高考物理易错知识点

★ 2022年高考物理选修知识点

★ 上海高考物理知识点2022年

★ 开学高中2022计划书10篇大全

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

文章标签: # 物体 # 方向 # 运动