您现在的位置是: 首页 > 热门院校 热门院校

高考函数总结_高考函数总结与反思

tamoadmin 2024-05-20 人已围观

简介高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A={-1,3}

高考函数总结_高考函数总结与反思

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a 1 来说,有2种选择(在或者不在)。同样,对于元素a 2 , a 3 ,……a n ,都有2种选择,所以,总共有 种选择, 即集合A有 个子集。 当然,我们也要注意到,这 种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为 ,非空真子集个数为 (3)德摩根定律: 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax 2 +bx+c(a>0) 在 上单调递减,在 上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上 ,也应该马上可以想到m,n实际上就是方程 的2个根 5、熟悉命题的几种形式、 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 6、熟悉充要条件的性质(高考经常考) 满足条件 , 满足条件 , 若;则是 的充分非必要条件 ; 若;则是 的必要非充分条件 ; 若;则是 的充要条件 ; 若;则是 的既非充分又非必要条件 ; 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有n m 个。 如:若, ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则到 的一一映射有 个。 函数 的图象与直线 交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法: l 分式中的分母不为零; l 偶次方根下的数(或式)大于或等于零; l 指数式的底数大于零且不等于一; l 对数式的底数大于零且不等于一,真数大于零。 l 正切函数 l 余切函数 l 反三角函数的定义域 函数y=arcsinx的定义域是 [-1, 1] ,值域是 ,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 10. 如何求复合函数的定义域? 义域是_____________。 复合函数定义域的求法:已知 的定义域为 ,求 的定义域,可由 解出x的范围,即为 的定义域。 例 若函数 的定义域为 ,则 的定义域为 。 分析: 由函数 的定义域为 可知: ;所以 中有 。 解: 依题意知: 解之,得 ∴ 的定义域为 11、函数值域的求法 1、直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例 求函数y= 的值域 2、配方法 配方法是求二次函数值域最基本的方法之一。 例、求函数y= -2x+5,x [-1,2]的值域。 3、判别式法 对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面 下面,我把这一类型的详细写出来,希望大家能够看懂 4、反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例 求函数y= 值域。 5、函数有界性法 直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。 例 求函数y= ,, 的值域。 6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容 例求函数y= (2≤x≤10)的值域 7、换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。 例 求函数y=x+ 的值域。 8 数形结合法 其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例:已知点P(x.y)在圆x 2 +y 2 =1上, 例求函数y= + 的值域。 解:原函数可化简得:y=∣x-2∣+∣x+8∣ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。 由上图可知:当点P在线段AB上时, y=∣x-2∣+∣x+8∣=∣AB∣=10 当点P在线段AB的延长线或反向延长线上时, y=∣x-2∣+∣x+8∣>∣AB∣=10 故所求函数的值域为:[10,+∞) 例求函数y= + 的值域 解:原函数可变形为:y= + 上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和, 由图可知当点P为线段与x轴的交点时, y =∣AB∣= = , 故所求函数的值域为[ ,+∞)。 注:求两距离之和时,要将函数 9 、不等式法 利用基本不等式a+b≥2 ,a+b+c≥3 (a,b,c∈ ),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。 例: 倒数法 有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例 求函数y= 的值域 多种方法综合运用 总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

函数对称性公式大总结是:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。

对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。

函数的对称性总结意义

函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决。

文章标签: # 函数 # 值域 # 定义域