您现在的位置是: 首页 > 热门专业 热门专业
数学高考双向细目表,2020高考文科数学双向细目表
tamoadmin 2024-05-28 人已围观
简介1.命制试卷的基本流程2.如何命制一份好的试卷 详细?0?33.组卷网怎么对着双向细目表找题4.哪些是属于教学目标双向细目表的内容5.初中数学月考命题双向细目表范例6.编拟双向细目表和精选试题谁在前面一、 数学命题原则1.普通高等学校招生数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,测试中学数学基础知识、基本技能、基本思想和方法,考查思维能力、运算能力、空间想象能力以及运用
1.命制试卷的基本流程
2.如何命制一份好的试卷 详细?0?3
3.组卷网怎么对着双向细目表找题
4.哪些是属于教学目标双向细目表的内容
5.初中数学月考命题双向细目表范例
6.编拟双向细目表和精选试题谁在前面
一、 数学命题原则
1.普通高等学校招生数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,测试中学数学基础知识、基本技能、基本思想和方法,考查思维能力、运算能力、空间想象能力以及运用所学数学知识和方法分析、解决实际问题的能力.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,在强调综合性的同时,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查.
2.数学学科的特点是高考数学命题的基础,在命题过程中命题人会充分考虑这些特点,发挥其内部的选拔机制,实现高考的选拔功能
数学是研究现实世界空间形式和数量关系的科学,高度的抽象性结论的确定性和应用的广泛性是数学的特点.数学的研究对象和特点体现在数学考试中就形成数学考试的学科特点.
(1)概念性强.数学是由概念、命题组成的逻辑系统,而概念是基础,是使整个体系联结成一体的结点.数学中每一个术语、符号和习惯用语都有着明确具体的内涵.这个特点反映到考试中就要求考生在解题时首先要透彻理解概念的含义,弄清不同概念之间的区别和联系,切忌将数学语言和日常用语混为一谈,更不应出现“望文生义”之类的错误.
例1、已知{a,b,c} {-1,0,1,2,4,8},以a,b,c为系数,组成二次函数y=ax2+bx+c,开口向上且不过原点的不同的抛物线有__________条。
在解此题中,学生容易犯两种概念性的错误,一个是将{a,b,c} {-1,0,1,2,4,8}与a,b,c∈{-1,0,1,2,4,8},混淆前者是集合,其元素具有互异性,而后者可以相同,二是二次函数y=x2+4x+2与y=2x2+8x+4是两个不同的函数,而方程x2+4x+2=0 与2x2+8x+4=0却有相同的解。
因此,我们在高三后期复习中,要注意发现学生在概念的理解上还有哪些错误和不严谨的地方;选题中,不要选语义不清,容易引起歧异的题;而在复习教学中,.同时应注意各种符号和图形的运用,减少生活语言对数学语言的干扰,影响学生的正常复习和思维方向。
(2)充满思辨性.这个特点源于数学的抽象性、系统性和逻辑性.数学知识不是经过观察实验总结出来的,而是经演绎推理而形成的逻辑体系,逻辑推理是其基本的研究方法;数学不是知识性的学科,而是思维型的学科.
例2、已知椭圆的离心率为0.5,两准线的距离为8,椭圆焦点为F1,F2,点P在此椭圆上,∠F1PF2=300,则ΔF1PF2的面积为___________。
在解此题中,学生会用椭圆的焦点三角形的面积公式b2 tan 快速地解答出,但本题可以有多种变化,如:椭圆改成双曲线,或改焦点为长轴顶点等(当然数据也要做相应调整),学生就不一定做得来了。
数学试题靠机械记忆,只凭直觉和印象就可以作答的很少.为了正确解答,总要求考生具备一定的观察、分析和推断能力.因此,在高三后期复习中,不要给学生补充太多的中间性的公式和结论,而应教会学生理解此中间性的公式和结论的本质和推导。
(3)量化突出.数量关系是数学领域研究的一个重要方面,也是数学测试不可缺少的内容,因此数学试题中定量性占有较大比重.试题中的定量要求一般不是简单、机械的计算,而是把概念、法则、性质寓于计算之中,在运算过程中考查考生对算理、运算法则的理解程度、灵活运用的能力及准确严谨的科学态度.由此可见,突出量化是数学试题的一个明显特点,并有重要的意义.
(4)解法多样.一般数学试题的结果虽确定唯一,但解法却多种多样,这有利于考生发挥各自的特点,灵活解答,真正显现其水平.命题时应考虑各种等价解法的考查重点和难度大致相同,解答到同样深度给同样的分值,不同解法的考查要求符合命题的初衷,实现考查目的.
例3、(04年)不等式 | x+2| 》| x | 的解集是___________。
在解此题中,学生可以用平方法,零点分段法,函数图象(数形结合)、数轴等多种方法,每一种方法都能体现相应的数学思想。我们在高三后期复习中,选讲的题尽量能象本题一样能体现出解法的多样性。
二、 数学命题的结构、题型、难度
1.全面考查考生素质,在选拔中应强调,只有各方面的素质都比较好的学生才是高校所需的学生.因此,试卷应有合理的知识结构和能力层次结构.知识结构是指试卷中包含学科各部分知识的比例.在编制双向细目表时,应根据各部分内容的教学时数和普通高考对考生知识结构的要求,确定试卷中各部分知识内容的分数比例,全面考查概念、定理、公式和法则等各项基础知识.试卷能力层次结构反映试卷对能力要求的层次和比例.试卷对能力要求的层次和比例,反映着考查的性质和要求.同样的学科知识内容,不同性质的考试对能力要求的层次和比例是不同的.在高考中,应既考查数学能力,又考查一般认识能力,如观察力、注意力、记忆力、想象力和思维能力;既考查较高层次的能力,又考查较低层次的能力.数学高考中,考试目标包括基本方法的内容?因此还应注意结合各项知识考查数学方法.将知识内容、数学方法和能力层次三者有机结合,并融入具体试题,才能有效地全面考查考生素质.
2.体现要求层次,控制试卷难度
高考的目的是为高校选拔新生,但其要求仍要以高中教学内容为基础.数学高考不同于数学竞赛.高考兼有速度要求,试卷难度适中,一般考生都能得到基本分;而竞赛是典型的难度考试,试卷难度很大,只有极少数考生能取得较好成绩.
例4、若椭圆 内有一点P(1,-1),F为椭圆的右焦点,椭圆上有一点M,使 |MP| +2|MF| 最小,则点M的坐标为____________
这是一道常见于各种参考书上的题,许多教师讲过,学生也做过,但它是由97年全国高中数学联赛的一道20分的大题改过来的,在高三后期就没有必要再讲,再做这种技巧强,解法单一的题了,从而为学生节约宝贵的时间和精力。
3 .根据教育测量学原理,大规模考试的整卷难度在0.5左右最为理想,可以使考生成绩呈正态分布,标准差比较大,各分数段考生人数分布比较合理,对考生总体的区分能力最强.但考虑到中学的评价方法和评价机制尚不健全,高考事实上对高中教学有着较强的评价导向作用,为稳定高中教学秩序,照顾全省总体的实际教学水平,整卷难度控制在0.55左右比较合适.估计应比03年容易,比05年难一点,大体与04年难度相当.
试卷中各种难度的档次一般这样界定,难度在0.7以上为易题,0.4—0.7为中档题,0.4以下为难题.从过去的全国高考来看,试卷中易、中、难三种试题的比例为3:5:2比较合适,各种题型中易、中、难题目的比例分别为选择题3:2:1,填空题2:1:1,而解答题一般不安排易题,中档题和难题的比例为1:1.其次各个试题的难度,一般在0.2—0.8之间,并在每种题型中编拟一些有一定难度的试题,从而实现选拔的目的.如果一道考题过难,就达不到选拔的目的。
因此,在高三后期复习中,我们的讲练都应以中档题中的较为有代表性的题为主,重点强调基本知识、基本思想和方法,强调熟悉和过手,而不是加难和拔高。
4.高考要以考查能力和素质为主.为真正考查出学生的潜能和素质,必须给学生更多的思考空间和时间,控制运算量,增加考生思考时间是高考改革的方向.因此,教师在选题、编题、教学、制卷中,应尽量避免繁、难的运算,控制计算量,排除由于计算过多过繁造成耗时较多,或由计算错误而造成学生分析障碍,以便学生集中思考问题.
5.由于文、理科所学习的内容上有许多不同的地方,并且文、理科学生的数学思维能力也有很大的差距,因此,文理科试卷在难度上是有差别的,试卷中交叉共用的部分多数属于中等难度的试题.文科考生能力的差距很大,水平差异更为明显,高考试题难度的起点较理科有所降低,而试题难度的终点应与理科相同.所以对于文理跨科的教师要注意在教学的各个环节中,一定要针对学生的不同情况,采用有一定差异的例题,练习题和考题,即使同一题,采取讲解方法,也会有所差异。
第三节 各章节内容在高考中考题特点
数学科有近200个知识点,而现在离高考仅两个月的时间,再分章节复习是不可能,同时高考命题强调知识之间的交叉、渗透和综合,分章节复习也不利于学生综合能力的提高,因此,高三后期复习应强化主干知识,因为主干知识是支撑学科知识体系的主要内容,在高考中,保持较高的比例,并达到必要的深度,构成数学试题的主体.我们应从高中数学的整体上设计教学,教学中应淡化特殊技巧,强调通法通解,强调数学思想和方法,同时又根据各章节内容在高中数学中的作用和特点,及其相互之间的关联,采取一些有所侧重的教学。
一、 函数、三角函数、导数
函数和导数是高中教学内容的知识主干,是高考重中之重.函数内容有三块:一、函数的概念,函数的图像与性质,指数函数和对数函数,反函数和函数的关系、函数的单调性;二、同角、诱导、和差、倍角公式,三角函数,函数的奇偶性和周期性;三、函数极限、函数连续性、函数的导数,导数的应用,使用导数的方法研究函数的单调性、极大(小)值和最大(小)值。
高考对函数内容的考查是考查能力的重要素材,一般考查能力的试题都是以函数为基础编制的,在旧课程卷中多与不等式、数列等内容相综合,在新课程卷中函数问题更多是与导数相结合,发挥导数的工具作用,应用导数研究函数的性质,应用函数的单调性证明不等式,体现出新的综合热点。随着函数与导数内容的结合,一般的问题都是先从求导开始,而求导又有规范的方法,利用导数判断函数的单调性,有规定的尺度,具有较强的可操作性,难度适中.
函数和导数的内容在高考试卷中所占的比例较大,每年都有题目考查.考查时有一定的综合性,并与思想方法紧密结合,对函数与方程的思想、数形结合的思想、分类讨论的思想、有限与无限的思想等都进行了深入的考查.这种综合地统揽各种知识、综合地应用各种方法和能力,在函数的考查中得到了充分的体现.
函数和导数的解答题在文、理两卷中往往分别命制,这不仅是由教学内容要求的差异所决定的,也与文、理科考生的思维水平差异有关.文科卷中函数与导数的解答题,其解析式只能选用多项式函数;而理科卷则可在指数函数、对数函数以及三角函数中选取.在选择题和填空题中更多地涉及函数图像、反函数、函数的奇偶性、函数的极限、函数的连续性和导数的几何意义等重点内容.在高考时往往不是简单地考查公式的应用,而是与数学思想方法相结合,突出考查函数与方程的思想、有限与无限的思想.
在新教材中,三角函数公式要求弱化,并对公式作了较大的删减,同角公式由8个删为3个;删去了余切的诱导公式;删去了半角公式、积化和差与和差化积公式;删去了反三角函数与简单三角方程的绝大部分内容,只保留了反正弦、反余弦、反正切的意义与符号表示,而简单三角方程的内容只要求由已知三角函数值求角.因此,新课程卷对三角函数的考查内容也随之进行了调整.由于新教材中删去了复数的三角式,删去了参数方程的部分内容,因此三角函数的工具性作用有所减弱,而新增内容如平面向量、极限与导数,它们在新教材中的工具性作用替代了三角函数在原教材中的工具性作用.
在高考中把三角函数作为函数的一种,突出考查它的图像与性质,尤其是形如y=Asin(ωx+φ)的函数图像与性质,对三角公式和三角变形的考查或与三角函数的图像与性质相结合,或直接化简求值.在化简求值的问题中,不仅考查考生对相关变换公式掌握的熟练程度,更重要的是以三角变形公式为素材,重点考查相关的数学思想和方法,主要是方程的思想和换元法.
由于删去了反三角函数与三角方程的大部分内容,对反三角函数求会用反三角函数符号表示相关的角,会由三角函数值求角就行.
二、数列
数列的内容很少,但在高考中,数列内容却占有重要的地位。主要内容有一般数列的概念与性质,等差数列与等比数列,及其通项公式与前n项和公式.高考历来把数列当作重要的内容来考查,对这部分的要求达到相应的深度,题目有适当的难度和一定的综合程度.数列问题在考查演绎推理能力中发挥着越来越重要的作用.高考试卷的数列试题中,有的是从等差数列或等比数列人手构造新的数列,有的是从比较抽象的数列人手,给定数列的一些性质,要求考生进行严格的逻辑推证,找到数列的通项公式,或证明数列的其他一些性质.在这里也有一些等差数列或等比数列的公式可以应用,但更多的是应用数列的一般的性质,如an=Sn-Sn-1等.这些试题对恒等证明能力提出了很高的要求,要求考生首先明确变形目标,然后根据目标进行恒等变形.在变形过程中,不同的变形方法也可能简化原来的式子,也可能使其更加复杂,所以还存在着变形路径的选择问题.
高考对数列的考查把重点放在对数学思想方法的考查,放在对思维能力以及创新意识和实践能力的考查上.使用选择题、填空题形式考查的数列试题,往往突出考查函数与方程的思想、数形结合的思想、特殊与一般的思想、有限与无限的思想等数学思想方法,除了考查教材中学习的等差数列与等比数列外,也考查一般数列.高考数列解答题,其内容往往是一般数列的内容,其方法是研究数列通项及前n项和的一般方法,并且往往不单一考查数列而是与其他内容相综合,过去,常将数列与函数,数列与不等式综合,而现在有数列与导数、解析几何相结合出题的新特点.
例如:下面的题就是一道数列与导数的结合
文、理科高考数列题一般命制不同的试题,理科试题侧重于理性思维,命题设计时以一般数列为主,以抽象思维和逻辑思维为主;而文科试卷则侧重于基础知识和基本方法的考查,命题设计时以等差、等比数列为主,以具体思维、演绎思维为主.
三、不等式
不等式是高中数学的重要内容之一,学生在高中阶段要学习不等式的性质、简单不等式的解法、不等式的证明以及不等式的应用.在新教材中,不等式的内容与原教材相比,作了一些调整.在解不等式部分,新大纲和新教材中删去了无理不等式、指数不等式和对数不等式的解法,只保留了二次不等式、分式不等式以及含有绝对值的简单不等式的解法;平均值定理由原来的三个正数降低为两个正数的要求.由于这些变化,高考命题也相应作出了调整.
在高考试题中,对不等式内容的考查包括不等式的性质,解简单的不等式以及平均值定理的应用等.对不等式性质的考查突出体现对基础知识的考查,其中也能体现出对相应思想方法的考查.以选择题、填空题形式考查解不等式,不仅仅考查解不等式时经常使用的同解变形的代数方法,更突出体现数形结合的思想以及特殊化的思想.对使用平均值定理求最值的考查,由于教学要求的变化,考查要求有所降低,突出常规方法,淡化特殊技巧。在解答题中,一般是解不等式或证明不等式.不等式的证明与应用常与其他知识内容相综合,尤其是理科试卷,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维的考查.解不等式的应用往往以求取值范围的设问方式呈现,通过相关知识,转化为解不等式或不等式组的问题,并且往往含有参数,也有一定的综合性和难度.总之,以解答题的形式对不等式内容的考查,往往不是单一考查,而是与其他知识内容相综合,有较多的方法和较高的能力要求.
例如:下题就是一道不等式和解析几何、数列结合的题
四、立体几何
高考试卷中对空间想象能力的考查集中体现在立体几何试题上.在新旧教材中立体几何内容有较大的差异,主要是新教材编制了A、B两种版本,在B版教材中增加了空间向量的方法.
新教材中删去了圆柱、圆锥、圆台,只保留了球;而多面体中删去了棱台,保留了棱柱和棱锥,并且删去了体积的大部分内容.由于教材内容的变化,高考对这部分内容的考查也进行了相应的调整,删去的内容不再考查.不过多面体的内容在小学和初中都学习过,也学过相关几何体体积的计算,因此,在高考试题中出现多面体体积的计算应属于正常范围.
在立体几何中引入空间向量以后,很多问.题都可以用向量的方法解决.由于应用空间向量的方法,可以通过建立空间坐标系,将几何元素之间的关系数量化,进而通过计算解决求解、证明的问题,空间向量更显现出解题的优势.
五、解析几何
解析几何是高中数学的又一重要内容,新旧教材相比较变化不是很大,只是删去了极坐标,删减了参数方程,增加了简单线性规划的内容.其核心内容直线和圆以及圆锥曲线基本没有变化,因此高考对解析几何的考查要求也变化不大.不过,由于新教材中增加了平面向量的内容,而平面向量可以用坐标表示,因此,以坐标为桥梁,使向量的有关运算与解析几何的坐标运算产生联系,便可以以向量及其有关运算为工具,来研究解决解析几何中的有关问题,主要是直线的平行、垂直、点的共线、定比分点以及平移等,这样就给高考中解析几何试题的命制开拓了新的思路,为实现在知识网络的交汇处设计试题提供了良好的素材.
解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题是解析几何的基本特点和性质。因此,在解题的过程中计算占了很大的比例,对运算能力有较高的要求,但计算要根据题目中曲线的特点和相互之间的关系进行,所以曲线的定义和性质是解题的基础,而在计算过程中,要根据题目的要求,利用曲线性质将计算简化,或将某一个“因式”作为一个整体处理,这样就可大大简化计算,这其中体现的是“模块”的思想,也就是换元法.
解析几何试题除考查概念与定义、基本元素与基本关系外,还突出考查函数与方程的思想、数形结合的思想、特殊与一般的思想等思想
例如:下面的题就是在传统的解析几何中,加入了向量
六、概率与统计
概率统计在研究对象和方法上与以前学习的确定数学有所不同,是一种处理或然的或随机事件的方法,对过去的必然的因果关系的处理方法是一种完善和补充.
根据中学数学教学大纲的要求,有关概率与统计的内容在新课程中分为必修和选修两部分,其中必修部分包括:随机事件的概率,等可能事件的概率,互斥事件有一个发生的概率,相互独立事件的概率,独立重复试验等.在选修部分分为文科、理科两种要求,选修I为文科的要求,只含统计的内容,包括:抽样方法,总体分布的估计,总体期望值和方差的估计.选修Ⅱ为理科的要求,包括:离散型随机变量的分布列,离散型随机变量的期望值和方差,抽样方法,总体分布的估计,正态分布,线性回归.在高考试卷中,概率和统计的内容每年都有所涉及,以必修概率内容为主,不过随着对新内容的深入考查,理科的解答题也会设计包括离散型随机变量的分布列与期望为主的概率与统计综合试题.
概率与统计的引入拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算等内容都是考查实践能力的良好素材.
由于中学数学中所学习的概率与统计内容是这一数学分支中最基础的内容,考虑到教学实际和学生的生活实际,高考对这部分内容的考查贴近考生生活,注重考查基础知识和基本方法.
第四节 我在高三后期复习中的一些策略
高三后期学生普遍感到什么知识都知道,各种题型也见过,自己做题也基本都会,但就是模拟考试经常考不好,达不到理想的效果,而时间越来越少,高考越来越近,又没有好的方法,摆脱困境,只有拼命练题,练了又忘,忘了再练,加班加点,疲劳之至。
因此,我们做为教师有必要采取一些科学、合理、切实、高效的方法和策略,引导和帮助学生,有效地整合旧知识,熟练基本方法,形成更强的综合运用的能力,以一种积极、健康的心态,高昂的士气去迎接高考的到来。针对这些我想谈一下个人在高三后期复习教学中的一些策略,以供各位教师参考。
命制试卷的基本流程
不能,如何使用《双向细目表》命制试题考试命题双向细目表是一种考查目标(能力)和考查内容之间的列联表。制作考试命题 双向细目表,是命题工作的一个重要环节。
如何命制一份好的试卷 详细?0?3
命制试卷的基本流程是确定考试范围、确定试题难度、制订双向细目表、组卷、打印试卷及答案、审卷、校卷。
1、确定考试范围就是四个字“依纲靠本”。以考试大纲为纲,以课本范围为标准,源住教材而高于高材,重点在考查能力。
2、确定试题难度,试题难度约在0.50到0.70之间。也就是说,150满分的试卷平均分约75到105之间,数学科的平均分一般靠近低端。
3、制订双向细目表,这一个表是命题的技术关键。纵向是试题的题号,横向为考查的内容、课本所在的位置、考查的意图、难度系数预估。第一次命题的老师建议找一份高考真题,含详细的答案及命题意图的解读的文件的。先进行一次上面的双向细目表的复原,然后再独立完成一份。这一份细目表完成后,应及时交给审稿的老师,交流与修正,才进入下一个命题的环节。
4、组卷,就是命题原创试题。可以参考已有的高质量题库再次创造,一般分为修改原创的材料,或是修改问题求法,但修改后,一定要检查有没有科学性错误。数学科的题建议用几何画板作图验证。
5、打印试卷及答案,按印刷的格式打好试卷,评分标准及答题卡一并交审稿人员,对其中的图和文字的斜体或是正体都是规范。以减少重复劳动或是不必要的错误。
6、审卷校卷,最后对试卷进行审核,一般由三个人共同审核校对,三个审卷人中,只有一个人认为此题不当,都要更改。
原创试卷对比题库的优势
1、提高学习兴趣:原创试卷可以通过设计创新和多样化的题目形式,激发学生的学习兴趣,提高学习动力。
2、考查深度理解:原创试卷可以更好地考察学生对知识的深度理解和应用能力。与题库中的标准题目相比,原创试卷可以设计更具挑战性的问题,引导学生进行思考、分析和综合运用知识。
3、避免重复性答题:原创试卷避免了题库中的重复性答题问题。使用题库时,学生可能会在多个资源中遇到相同或类似的问题。原创试卷可以提供更加独特和新颖的问题,帮助学生更好地理解和掌握知识。
组卷网怎么对着双向细目表找题
羁芅薄羄芀 莄蚆螇嗉莃蝿羃肂莂蒈螅 羁莂蚀羁羄莁螃袄节莀蒂 聿膈荿薅袂肄莈蚇肇羀蒇 蝿袀艿蒆葿蚃膅蒆薁衿肁 蒅蛳蚁肇蒄蒃羇羃蒃薆螀 芁蒂蚈罗膇蒁螀螈肃薀蒀 羃罿薀薂螆芈蕿蚄羂芄荟 袇螅膀薇薆肀肆腽虿袃羂 腽螁肈芁膂蒁袁膇膁薃肇 肃芀蚅衿罿艿螈蚂莇芈薇 袈芃芈蚀螁腿芇螂罴肃芆 蒂蝿羁芅薄羄芀莄蚆螇嗉 莃蝿羃肂莂蒈螅羁莂蚀羁 羄莁螃袄节莀蒂聿膈荿薅 袂肄莈蚇肇羀蒇蝿袀艿蒆 葿蚃膅蒆薁衿肁蒅蛳蚁肇 蒄蒃羇羃蒃薆螀芁蒂蚈罗 膇蒁螀螈肃薀蒀羃罿薀 薂螆芈蕿蚄羂芄荟袇螅膀 薇薆肀肆腽虿袃羂腽螁肈 芁膂蒁袁膇膁薃肇肃芀蚅 衿罿艿螈蚂莇芈薇袈芃芈 蚀螁腿芇螂罴肃芆蒂蝿羁 芅薄羄芀莄蚆螇嗉莃蝿羃 肂莂蒈螅羁莂蚀羁羄莁螃 袄节莀蒂聿膈荿薅袂肄莈 蚇肇羀蒇蝿袀艿蒆葿蚃膅 蒆薁衿肁蒅蛳蚁肇蒄蒃羇 羃蒃薆螀芁蒂蚈罗膇蒁螀 螈肃薀蒀羃罿薀薂螆芈蕿 蚄羂芄荟袇螅膀薇薆肀肆 腽虿袃羂腽螁肈芁膂蒁袁 膇膁薃肇肃芀蚅衿罿艿螈 蚂莇芈薇袈芃芈蚀螁腿芇 螂罴肃芆蒂蝿羁芅薄羄芀 莄蚆螇嗉莃蝿羃肂莂蒈螅 羁莂蚀羁羄莁螃袄节莀蒂 聿膈荿薅袂肄莈蚇 如 如何 何命 命制 制一 一份 份好 好的 的试 试卷 卷 教育评价的重要途径之一就是编制试题进行测试,通过试卷分数定量评价教师的教和学生的学。编制数学试题尤其是省、市质检试题以及高考、中考试题,其内容与评价标准是一种导向,使得我们的教学内容、目的、方法都依其导向而变更。因此试题的指导性、全面性、适切性以及其承载学科知识的科学性,思想性就成为十分重要、甚至直接影响基础教育水平的关键因素。怎样命制一份好的试卷,结合参加厦门市首批中学专家型教师培训学习以及多次参加质检命题的感想谈谈怎样命制一份高质量的试卷。 一、试卷中常见的几个问题 1.试卷中出现错题(知识命题的最低要求,同时也是最难达到的要求), 例如05 年福建省数学高考试题12. ) (x f 是定义在R 上的以3 为周期的奇函数,且 0 ) 2 ( f 在区间(0,6)内解的个数的最小值是( )A.2 B . 3 C.4 D.5 在四个答案中没有正确的答案, 再如某地的一道数学中考题:若三角形的周长为 30cm,面积为 75cm2,则该三角形的内切圆半径等于_____cm. 解:设三角形的三边长分别为a、b、c,周长为p,面积为S,内切圆半径r,则有 S = 1 2 ar + 1 2 br + 1 2 cr= 1 2 (a+b+c)r= 1 2 pr 于是,r = 2S p . 把S=75,p=30 代入,得r = 5(cm). 这正是命题者所期待的答案!但这样一来,立即出现一个令命题者尴尬的问题:内切圆半径为5cm时,内切圆的面积将是25π cm2,竟比三角形的面积(75 cm2)还要大! 这究竟是怎么回事呢?原来三角形的面积与周长之间有着内在的相关性: 由秦九韶——海伦公式和平均值不等式,得 S= s(s-a) (s-b) (s-c)≤ s (s-a)+(s-b)+(s-c) 3 3 = s 3s-2s 3 3 = 3 9 s2= 3 36 p2 (这里s = 1 2 (a+b+c) = 1 2 p,为三角形的半周长). 即三角形面积和周长之间必须满足不等式:S≤ 3 36 p2 (当且仅当 a=b=c 时取等号). 容易验证,上述中考题中的三角形的面积和周长之间并不满足不等式:S≤ 3 36 p2. 换句话说,周长为30cm,面积为75cm2 的三角形根本不存在!事实上,周长为 30cm的三角形的面积不会大于25 3cm2;面积为75cm2 的三角形的周长不会小于30 4 3cm. 在05 年甘肃省平凉市由于中考题出错造成4 万名考生重考,平凉市教育局副局长、局长先后受到市委、市政府的严肃处理后,负责具体工作的教育局教研所所长也受到了行政警告处分。即使在美国奥林匹克竞赛中的也出现了错误等。 另外试题表达不规范(语言表达不规范,与实际生活的不统一如的士计价,电讯计价等)与生活实际相违背也是各种试题中常常出现的错误 2.使用已有的试卷(下载试卷)由于学生基础的不同以及课程的变化,成品试卷不一定适合自己的教学,有必要将成品试卷进行在加工 3.试题选用不科学,信度、区分度失真 (衡量考试的质量通常有四个重要的指标:即考试的效度、信度、试题的难度和区分度。 ①信度。考试的信度是指考试结果的可靠性程度对任何学生的多次测定都会产生比较稳定的、前后一致的结果。 ② 效度。效度指考试的准确性,反映的是考试内容与教学大纲或考试大纲的吻合程度。效度高的试卷,能够较准确地测试出学生掌握和运用所学知识的真实度。 ③难度。平均得分/满分。可根据不同的考试略有调整,建议控制在0.75 左右。若大于0.85 则偏易,若小于0.65 则偏难。 ④区分度。考出学生的不同水平,把优秀、一般、差三个层次的学生真正分别开。 二、:命题应遵循的基本原则及须注意的事项: 1.科学性原则。 科学性原则是指确保试题在科学性上准确无误, 不能出现知识性的错误,要确保命题的科学性和正确性。在语言叙述上简明易懂无歧义,在图文上匹配无错漏。 考试的目的是为了强化和巩固中学所学、且对学生终身发展都管用的基础科学知识。是此,命制的试题一定要具有科学性,否则就会贻误学生。特别是对于一些资料中长期处于错误状态的习题,或者是一些较大范围考试中出现的疏忽问题,更应有针对性地命制一些习题来正本清源,还其科学知识的本来面目。如人们对于蜜蜂发声的认识问题,在十万个为什么中介绍蜜蜂是依靠翅膀的震动发声的,此观点影响了大部分并不是(第18 届全国青少年科技创新大赛上,12 岁的聂利撰写的科学论文《蜜蜂并不是靠翅膀振动发声》,荣获大赛优秀科技项目银奖和高士其科普专项奖。) 人文性原则是指命题时应树立以人为本的思想,一方面,应具有善心和爱心,在整体构思(包括难度分布、题型设置等方面)与具体题目的设计上,应面向全体学生, 考虑他们的实际水平与思维方式,设身处地为他们着想,留有足够的思考时间,有利于他们发挥水平,让他们获得良好的情感体验,体会到思考的快乐,同时在材料背景与试题原型的选择与设计上应体现公平性。另一方面,应适当结合社会生活中人文性的题材,编拟合适的数学试题,引导教学关注人类、关心社会,重视联系实际,发挥试题的育人作用。 科学性与人文性在中考命题中起着基础的作用,只有实现这两者的有机结合, 才能相辅相成,相得益彰。 2.稳定、创新性原则 稳定性原则是指命题应从学生受教育的实际出发,在难度、方向、结构等方面应保持相对的稳定,不宜一时一个花样,作过大的变化,例如江苏省的高考六年五个方案,受到社会的非议,命题改革应渐变而不宜突变,这有利于继承多年以来所积累的长处与形成的特色,有利于教学秩序的相对稳定,有利于试题改革的稳定进行,有利于逐步推进素质教育。但稳定是相对的、暂时的,创新才是不断的、永恒的。 创新性原则是指命题应做到稳中求变,变中求新,新中求好,给学生提供创新、展示才华的机会。创新意味着不满足现状、始终不渝的一种追求,意味着内容、形式、结构、情景、设问方式等方面与以往的不同,它可以是新瓶装新酒的形式, 也可以是新瓶装老酒或老瓶装新酒的形式,它给试卷带来活力,给教师带来喜悦、带来启发、带来冲击,看到新颖的试题有一种精神上的愉悦感,感到我们的教学应重视创新意识的培养,产生必须改革因循守旧的思想观念与教学模式的想法,给学生带来新鲜与挑战,为课程教材改革提供动力。近几年上海的高考试题总能出现新的亮点提示我们:设计良好的新情景题、开放题、探索题、综合题与小巧别致的填空选择题等等,是教师学生喜欢接受的。 3.全面、开放性原则。 试题的覆盖面要宽要全面,但不一定要面面俱到,重点知识重点考察,要保证试题在所测内容上具有典型性,杜绝偏题、怪题和超纲题。要做好这一点,最好的办法就是“两步走”,先编制方案,搭好框架,再细化考题内容,形成试卷。 开放性试题关注学生的个性化发展,为学生的能力留有可发挥的空间,开放性试题的一大优点是能够引发学生的主动探索。学生在探索中的猜想,合情推理,直至演化为演绎推理,逻辑证明,这一过程是对学生创新精神和严谨求学精神的培养。开放性试题通过增加数学问题中的某些要素的不确定性(条件开放,或结论开放,或设计思想开放),考核学生的发散思维能力和水平,区别学生的认知层次和对数学的领悟程度,开放性试题内涵丰富,涉及科学知识面较广泛,且分值区分度明显。命题内容的开放性应体现在多角度、多侧面、多层次地提出问题,以培养学生发散思维和灵活应用知识的能力。 4.规范、适切性原则 规范性原则是指成品试卷应符合试卷的规范,题头、登分表、说明、页尾标注等应正确规范,不缺漏,在题目的表述上应符合知识的规范与语言文字的规范,适当控制文字的数量,做到叙述简洁流畅易懂,标点正确,字母的斜体正体使用得当, 图文匹配,题目不跨页等。 适切性原则有两层意思,一是就整体而言,试题整卷难度、难度分布及难中易的比例、题目的数量与知识点的覆盖率(虽然不强调过高的覆盖率,但也要有一定的覆盖率)、试题的内容结构与能力结构等等应尽可能做到合理。二是就具体题目而言,某个题放在某一位置时,难度、题型、设问方式等方面应做到适宜性、贴切性;题目的立意、教育价值应与教育目标保持一致,设想与表述、题型与考查目的等保持一致。 这一原则在命题时不应忽视,前者对试卷的规范和有利于学生作答方面起到保障作用,后者则对整卷能否发挥良好的考查功能起着重要作用,特别是全卷难度等方面,对考生的心理与今后的教学产生重大影响。09 年福建省高考数学试题就在这一点有所欠缺,试题16 题起点高不利于学生答题,两道压轴题坡度陡升区分度不好,国家考试中心对福建省试题的鉴定意见为“新课程理念发挥的淋漓尽致,大大超前于课程改革的现状,与福建省的教育地位很不相称”,这也对我们的适切性提供了借鉴。 5.和谐、优美性原则 卷面布局合理,排列美观,要与中考高考相吻合,试卷显露出质量上的优与排版上的美,它既表现为形式上的美观,图形上的对称,也表现为结构上的合理、表达上的简明,还表现在设问上的精巧,逻辑关系的自然融洽。和谐与优美既是一种整体性上的要求,又是一种风格上的追求。只有风格上的简洁、和谐、新颖、优美而不是模式上呆板的追求,才有可能创造出新而不怪、和中有致、有品位的高质量试卷。如果少了和谐性的追求,试卷的优美与质量则无以保证。 三、出卷步骤 要编制出一份好试卷,除了要有明确、正确的指导思想外,还必须要有一个科学的编制过程。 1.、了解测试的性质 什么级别的测试?测试对象是谁(哪个年级,学生水平)?测试范围是什么?测试时间是多少?试卷大体的组成结构(题型、分值)及难度系数预控制在多少? 2.、重温大纲和教材 充分了解教学目标(三维)充分把握教学重难点充分理清知识脉络,融会贯通 3.、制定“命题双向细目表” 根据考试的目的与要求所编制的双向细目表是设计试卷的蓝图。双向细目表是一种考查目标(能力)和考查内容之间的列联表。一般地,表的纵向列出的各项是要考查的内容即知识点,横向列出的各项是要考查的能力,或说是在认知行为上要达到的水平,在知识与能力共同确定的方格内是考题分数所占的比例。 命题双向细目表具有三个要素:考查目标、考查内容以及考查目标与考查内容的比例。确保试卷有较宽的覆盖面,确保试卷的质量,避免随意性和盲目性。 双向细目表的设计步骤: (1)确立知识要点 ①列要点。先要认真分析教材,把教材中的知识点找出来。可将各单项的细小的知识点合并归类,组成大的知识块。通常把新授的、经过一定训练的内容,作为检测重点。②定比例。即确定每一章要点应占的分数比例。 (2)确立能力水平层次 了解、理解、掌握、应用、综合应用 (3)排列各部分所占比例排出分值、题型、难易度 (4)汇总与调整 依据汇总情况,分析整个测试在能力水平方面的要求,是否符合测试目的、纲要要求以及学生的实际情况。 有了这张表,试卷的知识点分布就比较合理,保证一定的覆盖率,正确地突出重点,也容易满足预定设计参数,只有将命题计划表编制得尽可能全面、周到、准确, 才能为编制出一份好的试卷奠定基础。 4.、按照细目表遵循命题的基本原则命题 数学试题的基本编拟方法主要有: (1)选题 选题是指选用某些现成的题目作为试题。选题的原则:选题一般是数学知识体系中常规的带有普遍性的问题;内容能体现知识重点,有代表性;形式要完美;在试卷中有一个合适的比例;选题取材主要来自普遍使用的教材。选题要有明确的指向:它服从于考查的目的,对知识深度、广泛的要求以及解法涉及的数学思想和数学方法的要求。选题的作用:体现一个明确的导向,引导考生重视教材,认真读书, 注重认识过程,强化数学思想和数学方法,等等。必要时选题可适当改动,比如,改变题目的描述方式,改变题中的数字、文字,改变题型等,但必须保持原题的基本风格、基本解法和难度,否则是“改题”。 (2)改题 改题是指以一个现成的题目为基础,经过修改成为一个适用的试题。改题的主要方法:改变题中条件的文字参数;用同类型概念或可比性的性质替代原题的条件; 用等价命题、逆命题、否命题取代原题;对原题作一般化或特殊化处理;改变题目 中的条件或结构(增强或减弱);对题目进行外包装;变更题型或改变提问方式或变化为探索性、开放性的题目;对若干成题进行组合。改题要注意的问题:成题后认真比照原题,研究涉及的知识点、试题风格、解题方法、难度等方面的变化,是否符合考查目的。改题是各类命题中常见的方法,但是也是最容易出错误的命题方式,对于改变后的试题一定要多次进行检查。 (3)编题 编题是指根据命题要求编制新颖的试题,是命题的重要手段。它要求教师有丰富的专业知识和较高的业务能力。编制后的新题要从多方面论证其科学性与规范性。 5、试答全部试题 命题人必须对试题进行试答,检查题目之间的相对独立性,应该注意防止不同试题之间重复、类似或者有相互提示的现象出现。检查试卷的文字阅读量,文字阅读量过大会使学生由于一般文字阅读水平方面,包括文字信息量记忆方面的差异而造成数学学业水平考试成绩方面的差异,从而使得数学学业水平考试未能真正客观地评价学生的数学学习状况。记录答题时间。(这项工作最好在试卷完成后过一段时间再来进行,避免自己命题无法控制难度)一般情况下,用于实际考试的时间,为命题教师试答试卷时间的1.5--2 倍。 6、调整完善 根据答题实际时间的需要,和答题估计试卷难度对试题内容进行适当调整。 7、制定评分标准 规范给出参考答案、科学给分尺度和评分标准 四、一份好试卷的标准 出好一份试卷,是一个教师做好本职工作的一项必备的基本技能。每个老师都出过试卷,都体会过要出好一份试卷是非常不容易的、也是非常辛苦的。因为一份试卷的命制要花费大量的时间,而评价一份试卷好坏又标准不一,学校有学校的尺度、每个老师也各有各的尺度,可谓见仁见智、众口难调。所以,要出一份尽善尽美的试卷几乎是不可能的,具体要求有下面三点 好的试卷首先要经得起视觉的考验。字体、字号要恰到好处,尽量同中考、高考吻合,数字标点要规范, 图文并茂不单调,图形分布要均衡,题目阅读量 要适度,选择题的题干不宜过短也不宜超过三行,问答题提问方式及个数要求适度。 好的试卷必须要经得起专家的考证。从效果来看要有信度与效度,区分度合理,难度适中,从试题的设计来看,题量要适中,题型要多样,题目要有科学性,还要有原创性、逻辑性、思维性、覆盖面等。在我们的学生家长中不乏教育专家,大学教授,他们对考试都有较深刻的研究。 好的试卷还要经得起公众的评论。我们的试卷最后会通过学生流向社会,交流到各学校,或通过网络传播到各地市,社会公众就是评委。为了减少不必要的误解或可能的歧义,热点问题不必刻意追求,敏感问题最好绕开走。 能否的出一份好的试卷是教师基本功的一个重要方面,反映一名教师的教学水平和驾驭教材、把握教学的一种综合能力,教师的命题实质上是教学过程的延伸和对课程教材的深度开发,是教师专业化发展的新内容。 祝愿大家命制一份高质量的考试试题! 蒀莃 袀膂芃蚂衿袂肆荟袈羄芁 薄袇嗉肄蒀袆袆荿莆袆羁 膂蚄袅肁莈薀袄腽膁蒆羃 袃莆莂羂罗腿蚁羁膇莄蚇 羁艿芇薃羀罿蒃葿薆肁芅 莅薅膄蒁蚃薄袃芄蕿蚄罴 葿蒅蚃肈节莁蚂芀肃螀蚁 羀莀蚆蚀肂腽薂虿膅荿 蒈蚈袄膁莄蚈羇莇蚂螇聿 膀荟螆膁莅蒄螅袁膈蒀蛳 肃蒄莆螃膅芆蚅螂袅蒂薁 螂羇芅蒇螁肀蒀莃袀膂芃 蚂衿袂肆荟袈羄芁薄袇嗉 肄蒀袆袆荿莆袆羁膂蚄袅 肁莈薀袄腽膁蒆羃袃莆莂 羂罗腿蚁羁膇莄蚇羁艿芇 薃羀罿蒃葿薆肁芅莅薅膄 蒁蚃薄袃芄蕿蚄罴葿蒅蚃 肈节莁蚂芀肃螀蚁羀莀蚆 蚀肂腽薂虿膅荿蒈蚈袄膁 莄蚈羇莇蚂螇聿膀荟螆膁 莅蒄螅袁膈蒀蛳肃蒄莆螃 膅芆蚅螂袅蒂薁螂羇芅蒇 螁肀蒀莃袀膂芃蚂衿袂肆 荟袈羄芁薄袇嗉肄蒀袆袆 荿莆袆羁膂蚄袅肁莈薀袄 腽膁蒆羃袃莆莂羂罗腿蚁 羁膇莄蚇羁艿芇薃羀罿蒃 葿薆肁芅莅薅膄蒁蚃薄袃 芄蕿蚄罴葿蒅蚃肈节莁蚂 芀肃螀蚁羀莀蚆蚀肂腽薂 虿膅荿蒈蚈袄膁莄蚈羇莇 蚂螇聿膀荟螆膁莅蒄螅袁 膈蒀蛳肃蒄莆螃膅芆蚅螂 袅蒂薁螂羇芅蒇螁肀蒀莃 袀膂芃蚂衿袂肆荟袈羄芁 薄袇嗉肄蒀袆袆荿莆袆羁 膂蚄袅肁莈薀袄腽膁蒆羃
哪些是属于教学目标双向细目表的内容
1、在智能组卷下,选中“双向细目表组卷”,进入选择细目表的页面。
2、根据老师的使用需求,可以选择系统推荐的细目表或自己保存的细目表。
3、老师可选择自己想要的细目表,点击名称后,进入到细目表预览页面。
4、双向细目表预览页面,为老师提供了“大题题量分布”、“难度分析”与“知识点分析”,方便老师清楚的了解细目表。
5、教师可根据试卷的要求,对细目表名称、大题名称进行修改。
6、教师可根据实际情况,修改试题的题型、试题绑定的知识点、试题的难度。
7、点击底部的“添加新大题”按钮,可以添加一个新大题了。
8、在某个大题下,点击“添加新试题”,可以批量添加试题了。
9、点击保存细目表,可以将细目表保存在我的细目表中。
10、点击“马上出题”,可根据细目表的设置情况,选择相应的试题,完成双向细目表。
初中数学月考命题双向细目表范例
在课程改革深入发展的今天,广大的教师都在努力认真地体现课程标准的要求,努力提高课堂教学的有效性和课堂教学的质量。但是,在课堂教学中,教师往往存在着“目标把握不准”,重点、难点、易错点,把握不住,不知要“达到什么时候程度”;存在教师如何了解学生学得怎样?学习的效果和效率如何?存在如何评价和测量一节课学生学习的水平?如何进行学习质量和学习情况的监控?这些现象。但使用《教学目标双向细目表》就可以避免教学的盲目性,加强针对性,促进教学的有效性。它能很好地帮助教师把握重点,有的放矢。
第一次听到《双向细目表》这个名词是在2013年的一月份。那时学校请郭景阳教授做了讲座并下发了《双向细目表》。当时的我,觉得很茫然。后来在学校的要求下,我尝试制定了一个单元的“课堂教学双向细目表”,虽然起初感到有点困难,也很辛苦,但结束后发现自己有了提高,同时,也一下子通过《双向细目表》发现了自己在制定课堂教学目标的过程中需改进的方面。虽然目前我的相关理论知识还很贫乏,但是我至少对《双向细目表》有了实践意义上的认识。我也从刚开始时感觉麻烦,辛苦,困难,到现在认可《双向细目表》对促进有效教学的意义,并打算用科研来引领自己的教学,提升教学水平,使自己与时俱进。以下就是我一年实践下来的几点初浅认识:
一、立足学生,目标导学——引导教师教、学生学的行为
要上好一节课,备课是关键,而制定目标是第一步,课堂教学的引入、过程的设计、练习题的精选、课堂测试等都是围绕目标进行的。
在每个单元的教学之前,根据考纲要求,建立本单元的知识,能力体系,然后将他们落实到“课堂教学双向细目表”中,使每节课的目标更清晰、精准、适切,这样学生学习有了目标,教师引导有了依据,学生的学习过程可以及时反馈和调控,同时也使每节课要达到什么程度有了可操作性的标准,使课堂教学具有可控性,使质量的检测有可操作性。以我们英语学科的“课堂教学双向细目表”为例,它分为:教学目标细目表和评价目标细目表,对教学内容和达成程度进行了细化和分解。纵向“目标分解”中,将本节课的知识点进行细化,分为听、说、度、写、语言功能和文化意识这五个方面,主要依据课程标准和教材内容来分解每节课的知识目标、过程方法和情感态度目标,是本节课要掌握的知识点和总体目标。这就要求教师充分钻研课程资源,对学科有整体性的把握和分割。横向“学习、检测水平”列学习水平和评价标准:根据对不同目标要求,分为识记、理解、应用三个层次的要求,要求教师要依据学情分解各知识点的思维坡度,这就要求教师从班级学生的实际出发,对不同的班情可以酌情调整达成程度的要求。例如对目标二,“学习水平”要求达到能“应用”该知识点的程度,“评价目标”明确用“选择题”“填空题”“解答题”来检测达标程度,均用“应用”层次的问题来检测。纵向“目标达成”是对学生学习的要求和目标达成的途径,学生的“学习目标”与上面的“目标分解”中的目标基本对应,但不完全相同,学生的“学习目标”侧重于学生自身的学习要求,在“目标达成”里,还指出了学习的重点。通过制定这张表格,这使得我上课基于课本重点,从知识,能力,主题三个维度展开,有的放矢的进行。
二、设计过程和问题——监控“如何达成目标和学情个体关注度”
根据 “教学目标双向细目表”,在设计教学过程时,每一目标指引相应的情境创设和问题设计。这样即使不同教师教学风格不同,不同学生学习能力有差异,基本的授课内容和过程指向性都是清晰明了的,每一步进展到何种程度有了明确的考量,课堂上因为语言琐碎、追求形式等造成的无效时间可以减少到最低程度,有效实施教学过程自我监控的优化。
三、察看学情,检测评价——监控“目标达成率”
学生学到什么比教师教了什么更重要,评价学生的学习情况能有效监测学情。每一个单元我们都设置了课内基础检测题,分配到每个课时中,每节课留五分钟,全面检测当堂每个学生的学习情况,使学生能自我监控,教师能及时调整教学策略。检测题的设计依据就是“评价目标细目表”。接着,在每天的作业中也要体现每堂课事先制定的知识,能力重点,主要是做课外基础检测题和提高题。最后在阶段测试,期中期末复习及考试中整合阶段的知识,能力重点,使学生反复循环,不断提升,体验学习的有效,感受学习的快乐。
目前我已制定了两个学期的“课堂教学双向细目表”,它简洁、具体的课堂质量临控方式,有力地保障了课堂教学目标的精准、务实、到位,使课堂的每个基本环节基于每个学生的认知和体验,有了明晰、规范、可操作的学生和教师自我监控的方式,使我们的教学真正体现让学生“减负增效”,真正实现有效教学。
编拟双向细目表和精选试题谁在前面
双向细目表2011年初中毕业生学业考试卷(数学)双向细目表
知识领域 知识点 能力要求 题号 分数 难度系数 年级
分布
认知水平
了解 理解 掌握 灵活运用
数与代数 有理数概念 掌握有理数的基本概念 1 3 0.9 七年级 √
数与代数 科学记数法—表示较大的数 掌握科学记数法的表示方法 2 3 0.8 七年级 √
统计与概率 随机事件的概率 会计算随机事件的概率 3 3 0.7 七年级 √
空间与图形 由三视图判断几何体 会正确判断简单物体或组合体的三视图;能根据三视图描述基本几何体或事物原型 4 3 0.8 七年级、九年级 √
统计与概率 众数 理解众数的概念 5 3 0.8 八年级 √
数与代数 勾股定理、实数及数轴 结合勾股定理的应用,掌握在数轴上表示实数 6 3 0.6 八年级 √
空间与图形 含30度角的直角三角形;垂线段最短. 理解和掌握垂线段最短的性质和含30度角的直角三角形的的性质 7 3 0.7 九年级 √ √
数与代数 函数的图象 能根据实际问题作出函数的图象 8 3 0.6 七年级 √
空间与图形 图形镶嵌 理解镶嵌的含义,会判断正多边形能否作镶嵌 9 3 0.6 八年级 √
数与代数 反比例函数和一次函数的图象及性质 利用函数图像解决问题 10 3 0.6 九年级 √
空间与图形 平行线的性质;对顶角、邻补角 掌握平行线的性质、对顶角、邻补角 11 4 0.8 七年级 √
数与代数 一次函数的图象及性质 能根据一次函数的性质确定其图像 12 4 0.7 八年级 √ √
统计与概率 方差 能用方差判断一组数据的稳定情况 13 4 0.8 八年级 √
数与代数 二次函数的图象及性质 能根据二次函数的性质确定其图像 14 4 0.7 九年级 √ √
空间与图形 等腰直角三角形;三角形的面积;勾股定理. 理解和掌握等腰直角三角形的性质,以及三角形面积公式和勾股定理的应用,并能通过面积的计算探索规律 15 4 0.6 八年级 √ √
数与代数 分式的化简求值;分式的定义及因式分解 会进行简单的分式运算和求值 16 8 0.6 八年级 √
统计与概率 扇形统计图;条形统计图 能从统计图中获得信息,并根据结果作出合理的判断和预测 17 ① 3 0.7 八年级 √ √
② 4 0.7 √ √
③ 3 0.7 √ √
空间与图形 正方形、等边三角形、等腰三角形、平行线的性质以及全等三角形的判定 掌握等腰三角形、等边三角形、正方形、平行线的性质以及能用全等三角形的判定方法证明三角形全等 18 ① 5 0.7 八年级
九年级 √
② 5 0.7 √
统计与概率 利用频率估计概率;列表法与树状图法 会利用频率估计概率,用列表或画树状图求事件发生的概率 19 ① 4 0.7 九年级 √
② 6 0.6 √
空间与图形 解直角三角形 能应用三角函数解决实际问题 20 10 0.6 九年级 √
数与代数 二次函数的相关知识 能根据条件解决二次函数的相关问题 21 ① 3 0.7 九年级 √ √
② 3 0.6 √ √
③ 4 0.5 √ √
空间与图形 切线的性质;平行四边形的性质;扇形面积的计算 能根据平行四边形及圆的有关性质进行圆的有关计算 22 ① 4 0.7 九年级 √ √
② 6 0.5 √ √
数与代数 二元一次方程组及一次函数的性质 会应用二元一次方程组及一次函数的建模解决实际问题 23 ① 4 0.7 八年级 √
② 6 0.3 √
空间与图形数与代数 平行四边形的性质;坐标与图形性质;矩形的性质 会确定点的坐标,能根据平行四边形的相关知识,进行分类探究,归纳猜想,发现规律。 24 ① 4 0.6 八年级
九年级 √ √
② 6 0.2 √ √
数与代数 一元二次方程和二次函数 能用一元二次方程及二次函数的建模解决实际问题 25 ① 4 0.7 九年级 √ √
② 4 0.5 √ √
③ 4 0.2 √ √
编拟双向细目表和精选试题双向细目表在前面
双向细目表中反映的“考点知识”,是填写本道试题所考核的考点知识名称。不能简单的划“,也不能填写题号和题目个数,必须写出所有考点知识。制作双向细目表时,试卷中拟对学生进行考核的“考点知识”须按节课进行编排;双向细目表中考点知识的个数必须与试卷中涉及的知识点个数相一致。
双向细目表中反映的“检测能力”,一律采用各学科提出的能力目标分类,只填写相应学科核心能力分类的序号。一般来说,检测的学科能力能体现对学生从最简单的、基本的到复杂的、高级的认知能力的考核。每前一目标都是后续目标的基础。所以一个考点知识在同一试卷中对应一^中题型,原则上只能对应一种考测目标。