您现在的位置是: 首页 > 教育资讯 教育资讯

2015高考卷数学试卷,2015高考全国卷数学

tamoadmin 2024-06-16 人已围观

简介1.高考数学哪一年最难2.2018年浙江高考数学试卷试题及答案解析(答案WORD版)3.2015年高考数学试卷山西与哪些省相同4.2015年浙江省数学高考试卷难吗5.求近几年数学高考试卷(带答案,最好是湖北省的)应该是的2016年要采用全国卷全国卷比山东卷略难为了过渡一下2015即今年的高考题可能会加大写难度个人感觉谢谢采纳高考数学哪一年最难 2018年四川高考数学试卷试题及答案解析(答案WORD

1.高考数学哪一年最难

2.2018年浙江高考数学试卷试题及答案解析(答案WORD版)

3.2015年高考数学试卷山西与哪些省相同

4.2015年浙江省数学高考试卷难吗

5.求近几年数学高考试卷(带答案,最好是湖北省的)

2015高考卷数学试卷,2015高考全国卷数学

应该是的

2016年要采用全国卷

全国卷比山东卷略难

为了过渡一下

2015即今年的高考题可能会加大写难度

个人感觉

谢谢采纳

高考数学哪一年最难

2018年四川高考数学试卷试题及答案解析(答案WORD版)

2015四川高考数学试卷点评

2015年高考数学试卷,遵循《考试大纲》及《考试说明(四川版)》要求,与近年来试题风格一致,切合当前数学教学实际,体现课程改革理念,符合高考考试性质,在平稳推进的基础上有所创新。试题设计立足于学科核心和主干,充分体现数学的科学价值和人文价值,将知识、能力和素质融为一体,深化能力立意,强化知识交汇,重点考查支撑数学学科体系的内容,充分考查基础知识、基本方法、基本思想,深入考查考生的运算求解能力、推理论证能力、抽象概括能力、空间想象能力、应用意识和创新意识,突出考查数学思维、数学思想方法,合理考查学生的探究意识和学习潜能。

全卷难度设置符合高中学生数学学习现状,重视教材考基础,突出思维考能力,体现课改考探究,展现了数学的抽象性、逻辑性、应用性和创造性,突出试题的基础性、综合性、原创性和选拔性,试卷布局合理、层次分明,问题设计科学、表述规范,有利于准确测试不同层次考生的学习水平。

一、重视教材与基础,突出核心内容

试题高度重视教材价值的挖掘与联系,有的题目直接由教材的例题或习题改编,有的问题产生于教材背景。文理科1-8、11-13、6-19等题源于教材,又高于教材,充分发挥了教材在理解数学、理解教学等方面的价值。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,能够有效引导中学数学教学重视教材、深刻理解教材,对进一步推进课程改革、减轻学生过重的学业负担具有良好的导向作用。

全卷重视基础知识的全面考查,覆盖了整个高中数学的所有知识板块;试题设计立足于高中数学的核心和主干,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科4、8、9、13、15、21,文科4、5、8、15、21等题,全面考查函数概念、性质等基础知识;理科5、10、20,文科7、10、20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科14、18题考查空间线面关系和面面夹角的计算,文科14、18题考查空间线面关系、三视图和体积的计算;理科17题,文科3、17题,考查概率统计相关知识;文理科16题,考查数列相关知识;文科3题考查分层抽样的概念,需要考生认识其本质属性;理科14题考查空间线线角的计算,如果概念不清,即使运算无误也不能获得正确结果。这样的内容设计,在全面考查基础的同时,突出考查支撑学科体系的的内容,重视对基础知识和通性通法的考查,对高中毕业生的数学基础和素养进行重点测试,保证了试卷的内容效度,有利于中学数学教学重视基础、强化核心内容和主干知识、回归数学本质。

二、注重能力与方法,强化数学思维

试卷以能力立意设计试题,多角度、多层次地考查了运算求解能力、推理论证能力、空间想象能力、抽象概括能力、数据处理能力、应用意识和创新意识。在此基础上,特别突出了对数学思维的全面、深刻考查,大量题目充分考查了观察、联想、类比、猜想、估算等数学思维方法与能力,对函数与方程、数形结合、分类与整合、化归与转化、特殊与一般等数学思想进行了全面考查。理科15、16、21题,文科15、21题,既考查了几何直观、联想、猜想、估算等直觉思维,又要求考生进行精确计算、严密推理;理科13、17题,文科8、17题,考查了运算求解能力、应用意识;文理科15题,考查了直觉猜想、抽象概括、推理论证和创新意识,对数学思维进行了全面考查,其特点是运算量小、思维量大;文理科16-21等题重点考查运算求解能力和推理论证能力;文理科20、21题,要求考生具备高水平的抽象概括能力、推理论证能力、运算求解能力、数学探究意识和创新意识,考查了多种数学思想与方法。

全卷注重考查学生对数学基本概念、重要定理等的理解与应用,注意控制和减少繁琐的运算。理科7、9、10、14、15、20、21题,文科7、9、10、14、15、21等题,如果灵活运用数形结合、化归与转化、特殊与一般等数学思想,就可简化解题过程、避免繁琐运算;文理科15题,虽然思维要求高,但在深刻理解问题本质的基础上,运用函数与方程、数形结合思想解答,并不需要特殊技巧与复杂运算。这类问题背景深刻、构思巧妙、取材适当、设问合理、切合实际,侧重考查考生对知识的理解和应用,强调科学性、严谨性、抽象性、探究性、综合性和应用性的考查,能够有效检测考生将知识、方法迁移到不同情境的能力,从而检测考生的思维广度、深度以及进一步学习的潜能。

三、关注探究与创新,体现课改理念

试卷从学科整体和思维价值的高度设置问题情境,注重知识间的内在联系与交汇;通过适当增强试题的`综合性,分层次设置试题难度,能更好地体现考试的选拔功能。理科9题涉及函数单调性、线性规划与基本不等式,文理科10题联系抛物线、圆、圆的切线和数形结合思想,具有较强的综合性和一定的难度;理科19题综合三角恒等变换与解三角形,立意鲜明、情境新颖、形式优美,考查考生思维的灵活性;文理科21题,以对数函数、二次函数、导数、函数零点、不等式等知识为载体,考查考生综合运用数学知识、数学方法、数学思想的能力。这样的试题对数学思维的灵活性、深刻性、创造性都有较高要求,具有一定的难度,解答这些问题,需要具有较强的分析问题、探究问题和解决问题的能力。

试题设计紧密结合数学学科特点,通过对探究意识、应用意识和创新意识的考查,充分体现了课程改革理念。文理科10、15、20、21等题考查了探究意识,考生需要深入分析问题情境,从特殊到一般、从直观到抽象进行不同侧面的探究,并合理运用相应的数学方法和思想才能准确、迅速解答。理科20题要求考生探究定点是否存在,若假设定点坐标直接求解则有不少运算障碍;若通过特殊情形的解决,寻求一般的、运动变化的问题的解决思路和方法,对具体的对象进行抽象概括,完成解答则相对简单。这样的问题设计,针对考生的探究意识和创新意识进行考查,保障了试题对较高学习水平层次考生的良好区分。理科13、17,文科8、17等题以考生熟悉的现实生活背景考查考生提炼数量关系、将现实问题转化为数学问题并构造数学模型加以解决的能力,体现了应用意识和实践能力的考查特点。文理21题展示了数学学科的抽象性和严谨性,要求考生具有高层次的理性思维,考生解答时可以采用“联系几何直观—探索解题思路—提出合情猜想—构造辅助函数—结合估算精算—进行推理证明”的思路,整个解答过程与数学研究的过程基本一致,能较好地促进考生在数学学习的过程中掌握数学知识、探究数学问题和发现数学规律。这些试题具有立意深远、背景深刻、设问巧妙等特点,富含思维价值,体现了课程改革理念,是检测考生理性思维广度、深度和学习潜能的良好素材。这样的设计,对考生评价合理、科学,鼓励积极、主动、探究式的学习,有利于引导中学数学教学注重提高学生的思维能力、发展应用意识和创新意识,对全面深化课程改革、提高中学数学教学质量有十分积极的作用。

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

高考数学年最难。

年的高考数学卷却一反常态,加大了试题难度,试题难度超出考生预期,这让考生们毫无准备,导致考生成绩分化严重。

好的学生五、六十分,非常不利于高等学校区分不同等级智力,知识水平的要求。84年数学试卷满分是120分,72分及格。当年数学及格的人特别少。

年,针对出现学生“高分低能”的现象,国家高考命题组在这一年的高考数学试卷上做了创新,其原则就是本着“考基础、考能力、出活题”的思想。却没有想到由于对考生水平和试卷难度把握不到位,给考生们留下了“噩梦”般的回忆。

知识拓展:

普通高等学校招生全国统一考试,简称“高考”,是合格的高中毕业生或具有同等学力的考生参加的选拔性考试。

普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。

参加考试的对象一般是全日制普通高中毕业生和具有同等学力的中华人民共和国公民,招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程计划和扩招,德智体美劳全面衡量,择优录取。

2015年,高考逐步取消体育特长生、奥林匹克竞赛等6项加分项目。

2016年,教育部严禁宣传“高考状元”、“高考升学率”,加强对中学高考标语的管理,坚决杜绝任何关于高考的炒作。

2017年4月7日教育部、中国残联关于印发《残疾人参加普通高等学校招生全国统一考试管理规定》的通知。

2022年,教育部发出《教育部关于做好2022年普通高校招生工作的通知》明确,2022年全国统考于6月7日举行。

2015年高考数学试卷山西与哪些省相同

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2015年浙江省高考数学命题思路

(数学学科组)

2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。

试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。

1.稳定考查基础,推陈出新

2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。

2.稳定能力要求,角度变换

试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。

3.稳定文理差异,逐步调整

试卷关注文理学生的学习差异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。

4.稳定试卷框架,形式渐变

试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。

试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。

2015年浙江省高考数学试题评析

调整试卷结构凸显能力考查

绍兴一中特级教师虞金龙

浙江省教研室特级教师张金良

今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:

1.考查双基、注重覆盖

试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。

2.注重思维、凸显能力

今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。

3.分层考查、文理有别

试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目中共有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的差异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题仅有1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。

4.稳中有变、坚持创新

创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。

统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上做题。

2015年浙江省数学高考试卷难吗

1、2015年山西省与河南省、河北省使用相同的新课标一卷。

2、2015年全国各省高考试题使用版本一览表:

01、新课标全国Ⅰ卷适用地区:河南、河北、山西

02、新课标全国Ⅱ卷适用地区:青海、西藏、甘肃、贵州、内蒙古、新疆、宁夏、吉林、黑龙江、云南、广西。

求近几年数学高考试卷(带答案,最好是湖北省的)

浙江卷还是比较难的,难度处于中上。

考试时,一定要根据自己的情况进行取舍,这样做的目的是:确保会做的题目一定能够拿分,部分会做或不太会做的题目尽量多拿分,一定不可能做出的题目,尽量少投入时间甚至压根就不去想。

如果程度较好,感觉前面的选择填空题做的很顺利,时间很充裕,在前面几道大题稳步完成的情况下,可以冲击下最后的压轴题,向高分冲击。

希望您高考金榜题名。

 2010年普通高等学校招生全国统一考试(湖北卷)

 数学(理工类)

本试卷共4页,三大题21小题,全卷满分150分。考试用时120分钟。

 ★祝考试顺利★

注意事项:

 1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。并将准考证号条形码横贴在答题卡的指定位置。在用2B铅笔将答题卡上试卷类型A后的方框涂黑。

 2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

 3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。

 4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 为虚数单位,则=

 A.- B.-1 C. D.1

2.已知,则=

 A. B. C. D.

3.已知函数,若,则x的取值范围为

 A. B.

 C. D.

4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则

 A. n=0 B. n=1 C. n=2 D. n 3

 试卷类型:A

 5.已知随机变量服从正态分布,且P(<4)=,则P(0<<2)=

 A.0.6 B.0.4 C.0.3 D.0.2

 6.已知定义在R上的奇函数和偶函数满足(>0,且).若,则=

 A.2 B. C. D.

 7.如图,用K、、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、、正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为

 

 A.0.960 B.0.864 C.0.720 D.0.576

 8.已知向量a=(x+z,3),b=(2,y-z),且a⊥?b.若x,y满足不等式,则z的取值范围为

 A..[-2,2] B.[-2,3] C.[-3,2] D.[-3,3]

 9.若实数a,b满足且,则称a与b互补,记,那么是a与b互补的

 A.必要而不充分的条件 B.充分而不必要的条件

 C.充要条件 D.即不充分也不必要的条件

 10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:,其中M0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)=

 A.5太贝克 B.75In2太贝克

 C.150In2太贝克 D.150太贝克

 二、填空题:本大题共5小题,每小题5分,共25分。请将答案填在答题卡对应题号的位置上,一题两空的题,其中答案按先后次序填写。答错位置,书写不清,模棱俩可均不给分。

 11. 的展开式中含的项的系数为

 12.在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 。(结果用最简分数表示)

 13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。

试卷类型A

14.如图,直角坐标系所在平面为,直角坐标系(其中与轴重合)所在的平面为,。

(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;

(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。

15. 给个自上而下相连的正方形着黑色或白色。当时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如下图所示:

由此推断,当时,黑色正方形互不相连的着色方案共有 种,至少有两个黑色正方形相连的着色方案共有 种,(结果用数值表示)

三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.

16.(本小题满分10分)

设的内角所对的边分别为,已知

(Ⅰ)求的周长

(Ⅱ)求的值

17. (本小题满分12分)

提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流速度x 的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.

(Ⅰ)当时,求函数的表达式;

(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时)

18. (本小题满分12分)

如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.

(Ⅰ)当=1时,求证:⊥;

(Ⅱ)设二面角的大小为,求的最小值.

19.(本小题满分13分)

已知数列的前项和为,且满足:, N*,.

(Ⅰ)求数列的通项公式;

(Ⅱ)若存在 N*,使得,,成等差数列,是判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.

20. (本小题满分14分)

平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.

(Ⅰ)求曲线的方程,并讨论的形状与值得关系;

(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。

21.(本小题满分14分)

(Ⅰ)已知函数,,求函数的最大值;

(Ⅱ)设…,均为正数,证明:

  (1)若……,则…;

  (2)若…=1,则……。

文章标签: # 考查 # 数学 # 能力