您现在的位置是: 首页 > 教育资讯 教育资讯
四川省数学高考题型分布_四川省数学高考题
tamoadmin 2024-08-02 人已围观
简介1.有谁知道2016年四川高考数学试题2.有没有会解下面这道高考题的,四川省2014年高考理科数学第19题。求大神解答~~题目如下,关于数列的3.2018年四川高考数学试卷试题及答案解析(答案WORD版)4.2023四川高考数学考全国卷几题目:如图,在正方体中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是____________。答案:二分之π详解:连接D1M,可以证得D
1.有谁知道2016年四川高考数学试题
2.有没有会解下面这道高考题的,四川省2014年高考理科数学第19题。求大神解答~~题目如下,关于数列的
3.2018年四川高考数学试卷试题及答案解析(答案WORD版)
4.2023四川高考数学考全国卷几
题目:如图,在正方体中,M、N分别是CD、CC1的中点,则异面直线A1M与DN所成的角的大小是____________。
答案:二分之π
详解:连接D1M,可以证得D1M⊥DN,(△NDC≌△MD1D,则∠NDC=∠MD1D,∠NDC+∠D1DN=90°,则∠MD1D+∠D1DN=90°,则D1M⊥DN)
又∵A1D1⊥面DCC1D1,DN在面DCC1D1内
∴A1D1⊥DN
即A1D1⊥DN,D1M⊥DN,A1D1与D1M相交
∴DN⊥面A1D1M
∵A1M在面A1D1M内
∴DN⊥A1M
若有任何疑问,还请提出,O(∩_∩)O谢谢
有谁知道2016年四川高考数学试题
对于2023年的四川高考数学难度情况,我们无从得知。因为高考数学考试的难度是由教育部对全国范围内的试卷难度进行统一调整的,不同地区高考考题的难易程度也可能会因此而有所差异。但是,我们可以从当前数学教学、学生素质、考试大纲等方面来探讨一下可能的情况。
首先,从数学教学的角度来看,随着教育水平的提高,国内各级学校越来越注重数学素养的培养,即注重学生数学基本概念的掌握、理解和应用。和历年相比,难度可能会下降,但是考试形式和内容还是会比较接近数学基础知识内容,一定会考察数学基础和思维方法运用的能力。
其次,从学生素质来看,四川省高中数学学科教学质量在近年来也发生了变化,学生的平均数学素养水平也越来越高。这是由于当前国家对教育的大力投入,以及各级学校、教师的努力所共同促成的。因此,在未来的高考中,学生将更多地发挥自己的数学思维和创新能力,更加积极地应对数学考试。
最后,从考试大纲和历年试题来看,高考数学试题的难度趋势也是逐年增加的。历年的高考试题中,在数学思维、推理、分析、解题能力等方面,难度也在不断加深。因此,2023年的四川高考数学试卷,可能也会注重深度和广度的评价,考察学生的数学素养和综合能力,试题难度可能更高一些,但也不能排除试卷难度适中和易难度的可能性。
总之,2023年的四川高考数学试题难度情况,仍然没有任何确定性的预测结果。但无论试题难度如何,都需要考生在平时的学习中注重数学基础知识的掌握、思维方式的转换、考试技巧的运用,做好充分的准备。相信只要你充分发挥自己的数学思维和创新能力,精通数学基本概念与方法应用,一定能在高考中取得好成绩。
有没有会解下面这道高考题的,四川省2014年高考理科数学第19题。求大神解答~~题目如下,关于数列的
理科
1.设集合,Z为整数集,则中元素的个数是[ ]
2.设i为虚数单位,则的展开式中含x4的项为[ ]
3.为了得到函数的图象,只需把函数的图象上所有的点[ ]
4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为[ ]
5.某公司为激励创新,逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是[ ]
(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)
6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,判断出v的值为[ ]
7.设p:实数x,y满足(x–1)2–(y–1)2≤2,q:实数x,y满足 则p是q的[ ]
8.设O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是线段PF上的点,且
=2,则直线OM的斜率的最大值为[ ]
9.设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则△PAB的面积的取值范围是[ ]
10.在平面内,定点A,B,C,D满足 ==,﹒=﹒=﹒=-2,动点P,M满足 =1,=,则的最大值是[ ]
11.cos2–sin2= .
12.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是[ ]
13.已知三棱镜的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是[ ]
14.已知函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=,则f()+ f(1)=
15.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
16.(本小题满分12分)
我国是世界上严重缺水的国家,某市为了鼓励居民节约用水,调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(I)求直方图中a的值;
(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(III)若该市希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
17.(本小题满分12分)
在△ABC中,角A,B,C所对的边分别是a,b,c,且.
(I)证明:;
(II)若,求.
18.(本小题满分12分)
如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为边AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
19.(本小题满分12分)
已知数列{}的首项为1, 为数列{}的前n项和, ,其中q>0, .
(I)若 成等差数列,求an的通项公式;
(ii)设双曲线 的离心率为 ,且 ,证明:.
20.(本小题满分13分)
已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.
(I)求椭圆E的方程及点T的坐标;
(II)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得∣PT∣2=λ∣PA∣·∣PB∣,并求λ的值.
21.(本小题满分14分)
设函数f(x)=ax2-a-lnx,其中
(I)讨论f(x)的单调性;
(II)确定a的所有可能取值,使得在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).
2018年四川高考数学试卷试题及答案解析(答案WORD版)
这个题综合考查了指数函数的运算性质,导数的几何意义,等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力,计算能力,"错位相减法",难度还是挺大的。不过答案在下面,仔细看下答案及解题思路,相信你就明白了~
这里就是答案://gz.qiujieda/exercise/math/804188等差数列{an}的公差为d,点(an,bn)在函数f(x)=2^x的图象上(n∈N*).
(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;
(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-1/ln2,求数列{an/bn }的前n项和Tn
2023四川高考数学考全国卷几
2018年四川高考数学试卷试题及答案解析(答案WORD版)
2015四川高考数学试卷点评
2015年高考数学试卷,遵循《考试大纲》及《考试说明(四川版)》要求,与近年来试题风格一致,切合当前数学教学实际,体现课程改革理念,符合高考考试性质,在平稳推进的基础上有所创新。试题设计立足于学科核心和主干,充分体现数学的科学价值和人文价值,将知识、能力和素质融为一体,深化能力立意,强化知识交汇,重点考查支撑数学学科体系的内容,充分考查基础知识、基本方法、基本思想,深入考查考生的运算求解能力、推理论证能力、抽象概括能力、空间想象能力、应用意识和创新意识,突出考查数学思维、数学思想方法,合理考查学生的探究意识和学习潜能。
全卷难度设置符合高中学生数学学习现状,重视教材考基础,突出思维考能力,体现课改考探究,展现了数学的抽象性、逻辑性、应用性和创造性,突出试题的基础性、综合性、原创性和选拔性,试卷布局合理、层次分明,问题设计科学、表述规范,有利于准确测试不同层次考生的学习水平。
一、重视教材与基础,突出核心内容
试题高度重视教材价值的挖掘与联系,有的题目直接由教材的例题或习题改编,有的问题产生于教材背景。文理科1-8、11-13、6-19等题源于教材,又高于教材,充分发挥了教材在理解数学、理解教学等方面的价值。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,能够有效引导中学数学教学重视教材、深刻理解教材,对进一步推进课程改革、减轻学生过重的学业负担具有良好的导向作用。
全卷重视基础知识的全面考查,覆盖了整个高中数学的所有知识板块;试题设计立足于高中数学的核心和主干,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科4、8、9、13、15、21,文科4、5、8、15、21等题,全面考查函数概念、性质等基础知识;理科5、10、20,文科7、10、20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科14、18题考查空间线面关系和面面夹角的计算,文科14、18题考查空间线面关系、三视图和体积的计算;理科17题,文科3、17题,考查概率统计相关知识;文理科16题,考查数列相关知识;文科3题考查分层抽样的概念,需要考生认识其本质属性;理科14题考查空间线线角的计算,如果概念不清,即使运算无误也不能获得正确结果。这样的内容设计,在全面考查基础的同时,突出考查支撑学科体系的的内容,重视对基础知识和通性通法的考查,对高中毕业生的数学基础和素养进行重点测试,保证了试卷的内容效度,有利于中学数学教学重视基础、强化核心内容和主干知识、回归数学本质。
二、注重能力与方法,强化数学思维
试卷以能力立意设计试题,多角度、多层次地考查了运算求解能力、推理论证能力、空间想象能力、抽象概括能力、数据处理能力、应用意识和创新意识。在此基础上,特别突出了对数学思维的全面、深刻考查,大量题目充分考查了观察、联想、类比、猜想、估算等数学思维方法与能力,对函数与方程、数形结合、分类与整合、化归与转化、特殊与一般等数学思想进行了全面考查。理科15、16、21题,文科15、21题,既考查了几何直观、联想、猜想、估算等直觉思维,又要求考生进行精确计算、严密推理;理科13、17题,文科8、17题,考查了运算求解能力、应用意识;文理科15题,考查了直觉猜想、抽象概括、推理论证和创新意识,对数学思维进行了全面考查,其特点是运算量小、思维量大;文理科16-21等题重点考查运算求解能力和推理论证能力;文理科20、21题,要求考生具备高水平的抽象概括能力、推理论证能力、运算求解能力、数学探究意识和创新意识,考查了多种数学思想与方法。
全卷注重考查学生对数学基本概念、重要定理等的理解与应用,注意控制和减少繁琐的运算。理科7、9、10、14、15、20、21题,文科7、9、10、14、15、21等题,如果灵活运用数形结合、化归与转化、特殊与一般等数学思想,就可简化解题过程、避免繁琐运算;文理科15题,虽然思维要求高,但在深刻理解问题本质的基础上,运用函数与方程、数形结合思想解答,并不需要特殊技巧与复杂运算。这类问题背景深刻、构思巧妙、取材适当、设问合理、切合实际,侧重考查考生对知识的理解和应用,强调科学性、严谨性、抽象性、探究性、综合性和应用性的考查,能够有效检测考生将知识、方法迁移到不同情境的能力,从而检测考生的思维广度、深度以及进一步学习的潜能。
三、关注探究与创新,体现课改理念
试卷从学科整体和思维价值的高度设置问题情境,注重知识间的内在联系与交汇;通过适当增强试题的`综合性,分层次设置试题难度,能更好地体现考试的选拔功能。理科9题涉及函数单调性、线性规划与基本不等式,文理科10题联系抛物线、圆、圆的切线和数形结合思想,具有较强的综合性和一定的难度;理科19题综合三角恒等变换与解三角形,立意鲜明、情境新颖、形式优美,考查考生思维的灵活性;文理科21题,以对数函数、二次函数、导数、函数零点、不等式等知识为载体,考查考生综合运用数学知识、数学方法、数学思想的能力。这样的试题对数学思维的灵活性、深刻性、创造性都有较高要求,具有一定的难度,解答这些问题,需要具有较强的分析问题、探究问题和解决问题的能力。
试题设计紧密结合数学学科特点,通过对探究意识、应用意识和创新意识的考查,充分体现了课程改革理念。文理科10、15、20、21等题考查了探究意识,考生需要深入分析问题情境,从特殊到一般、从直观到抽象进行不同侧面的探究,并合理运用相应的数学方法和思想才能准确、迅速解答。理科20题要求考生探究定点是否存在,若设定点坐标直接求解则有不少运算障碍;若通过特殊情形的解决,寻求一般的、运动变化的问题的解决思路和方法,对具体的对象进行抽象概括,完成解答则相对简单。这样的问题设计,针对考生的探究意识和创新意识进行考查,保障了试题对较高学习水平层次考生的良好区分。理科13、17,文科8、17等题以考生熟悉的现实生活背景考查考生提炼数量关系、将现实问题转化为数学问题并构造数学模型加以解决的能力,体现了应用意识和实践能力的考查特点。文理21题展示了数学学科的抽象性和严谨性,要求考生具有高层次的理性思维,考生解答时可以用“联系几何直观—探索解题思路—提出合情猜想—构造函数—结合估算精算—进行推理证明”的思路,整个解答过程与数学研究的过程基本一致,能较好地促进考生在数学学习的过程中掌握数学知识、探究数学问题和发现数学规律。这些试题具有立意深远、背景深刻、设问巧妙等特点,富含思维价值,体现了课程改革理念,是检测考生理性思维广度、深度和学习潜能的良好素材。这样的设计,对考生评价合理、科学,鼓励积极、主动、探究式的学习,有利于引导中学数学教学注重提高学生的思维能力、发展应用意识和创新意识,对全面深化课程改革、提高中学数学教学质量有十分积极的作用。
2023四川高考数学考全国甲卷。
下面将从全国卷的优势、难度以及备考建议等方面进行详细解答。
一、全国卷的优势。
全国卷作为统一的考试标准,具有多种优势。首先,它可以避免出现不同省份之间试题难度不均的情况,保证了公平性和公正性。
其次,全国卷的试题相对来说更加全面,覆盖面更大,可以更好地检验考生的知识储备和应试能力。最后,全国卷试题设置一般更加合理和科学,更加符合教育部的大纲,确保了考试质量和可靠性。
二、全国卷的难度。
虽然全国卷相对来说比省份卷的试题难度要稳定一些,但是也存在着难度波动的情况。这是因为全国卷的命题人员会根据近几年的考试情况及时调整试题难度,保证考试的公平性和可靠性。因此,考生需要在备考期间密切关注近几年全国卷的命题趋势和难度分布。
三、备考建议。
备考数学需要掌握好基础知识,尤其是初中和高中的数学知识。考生还需要注重对数学应用的理解和掌握,做到真正理解概念、掌握方法,而不是死记硬背公式。同时,在备考过程中需要注重练习,多做一些试卷、习题集和模拟卷等,提高自己的应试能力和心理素质。
考全国甲卷省份有云南、广西、贵州、四川、西藏。全国的高考考卷分别为全国甲卷、全国乙卷、新高考一卷、新高考二卷,北京、天津、上海、浙江自主命题制4套。
总之,2023年四川高考数学考试用全国甲卷,考生需要认真备考,全面掌握数学知识,关注命题趋势和难度分布,科学合理地制定复习和策略,相信能够取得优异成绩。