您现在的位置是: 首页 > 热门院校 热门院校

2016四川数学高考答案,2016年四川数学高考题及解析

tamoadmin 2024-05-23 人已围观

简介一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。1、的展开式中的系数是( )A、 B、 C、 D、[答案]D [解析]二项式展开式的通项公式为=,令k=2,则[点评]:高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.2、复数(

2016四川数学高考答案,2016年四川数学高考题及解析

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、的展开式中的系数是( )

A、 B、 C、 D、

[答案]D

[解析]二项式展开式的通项公式为=,令k=2,则

[点评]:高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.

2、复数( )

A、 B、 C、 D、

[答案]B.

[解析]

[点评]突出考查知识点,不需采用分母实数化等常规方法,分子直接展开就可以.

3、函数在处的极限是( )

A、不存在 B、等于 C、等于 D、等于

[答案]A

[解析]分段函数在x=3处不是无限靠近同一个值,故不存在极限.

[点评]对于分段函数,掌握好定义域的范围是关键。

4、如图,正方形的边长为,延长至,使,连接、则( )

A、 B、 C、 D、

[答案]B

[点评]注意恒等式sin2α+cos2α=1的使用,需要用α的的范围决定其正余弦值的正负情况.

5、函数的图象可能是( )

[答案]C

[解析]采用排除法. 函数恒过(1,0),选项只有C符合,故选C.

[点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.

6、下列命题正确的是( )

A、若两条直线和同一个平面所成的角相等,则这两条直线平行

B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D、若两个平面都垂直于第三个平面,则这两个平面平行

[答案]C

[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.

[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.

7、设、都是非零向量,下列四个条件中,使成立的充分条件是( )

A、 B、 C、 D、且

[答案]D

[解析]若使成立,则选项中只有C能保证,故选C

[点评]本题考查的是向量相等条件模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.

8、已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则( )

A、 B、 C、 D、

[答案]B

[解析]设抛物线方程为y2=2px(p>0),则焦点坐标为(),准线方程为x=,

[点评]本题旨在考查抛物线的定义: |MF|=d,(M为抛物线上任意一点,F为抛物线的焦点,d为点M到准线的距离).

9、某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )

A、1800元 B、2400元 C、2800元 D、3100元

[答案]C

[解析]设公司每天生产甲种产品X桶,乙种产品Y桶,公司共可获得 利润为Z元/天,则由已知,得 Z=300X+400Y

画可行域如图所示,

目标函数Z=300X+400Y可变形为

Y= 这是随Z变化的一族平行直线

解方程组 即A(4,4)

[点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).

10、如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为( )

A、 B、 C、 D、

[答案]A

[解析] 以O为原点,分别以OB、OC、OA所在直线为x、y、z轴,

则A

[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功.

11、方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )

A、60条 B、62条 C、71条 D、80条

[答案]B

[解析]方程变形得,若表示抛物线,则

所以,分b=-3,-2,1,2,3五种情况:

(1)若b=-3, ; (2)若b=3,

以上两种情况下有9条重复,故共有16+7=23条;

同理当b=-2,或2时,共有23条; 当b=1时,共有16条.

综上,共有23+23+16=62种

[点评]此题难度很大,若采用排列组合公式计算,很容易忽视重复的18条抛物线. 列举法是解决排列、组合、概率等非常有效的办法.要能熟练运用.

12、设函数,是公差为的等差数列,,则( )

A、 B、 C、 D、

[答案]D

[解析]∵数列{an}是公差为的等差数列,且

∴ 即

[点评]本题难度较大,综合性很强.突出考查了等差数列性质和三角函数性质的综合使用,需考生加强知识系统、网络化学习. 另外,隐蔽性较强,需要考生具备一定的观察能力.

文章标签: # 平面 # 答案 # 解析