您现在的位置是: 首页 > 热门院校 热门院校

高考数学答题策略_高考数学答题策略分析

tamoadmin 2024-05-16 人已围观

简介高考各科单选题答案都有一个共同的规律,既答案A、B、C、D的概率均为25%,所以不会的题蒙C只能做对四分之一的题。下面是我为你整理关于数学选择题蒙题技巧有哪些的内容,希望大家喜欢! 数学选择题蒙题技巧  1、答案有根号的,不选  2、答案有1的,选  3、三个答案是正的时候,在正的中选  4、有一个是正X,一个是负X的时候,在这两个中选  5、题目看起来数字简单,那么答案选

高考数学答题策略_高考数学答题策略分析

 高考各科单选题答案都有一个共同的规律,既答案A、B、C、D的概率均为25%,所以不会的题蒙C只能做对四分之一的题。下面是我为你整理关于数学选择题蒙题技巧有哪些的内容,希望大家喜欢!

数学选择题蒙题技巧

 1、答案有根号的,不选

 2、答案有1的,选

 3、三个答案是正的时候,在正的中选

 4、有一个是正X,一个是负X的时候,在这两个中选

 5、题目看起来数字简单,那么答案选复杂的,反之亦然

 6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条

 7、答题答得好,全靠眼睛瞟

 8、以上都不实用的时候选B

数学选择题蒙题技巧:中庸之道

 即数值优先选择?中间量?选项,选项优先考虑bcd。在同一道题中优先考虑数值的?中间量?后考虑选项bcd。(如e选项对应数值为中间量时,优先从数值入手考虑)出现诸如?以上结果都不对?的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:

 单值与多值(例如提干出现?偶次方、绝对值、对称性?等结果出现多值)正值与负值(考前冲刺p12/25题根据提干排除负值)(3)有零与无零

 区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)

 整数与小数(分数)参见考前冲刺p13/28题质数与合数大于与小于整除与不能整除

 带符号与不带符号(例如根号、平方号等等)

高考数学答题公式整理

 一、高中数学公式全集:

 常用的诱导公式有以下几组:

 公式一:

 设?为任意角,终边相同的角的同一三角函数的值相等:

 sin(2k?+?)=sin? (k?Z)

 cos(2k?+?)=cos? (k?Z)

 tan(2k?+?)=tan? (k?Z)

 cot(2k?+?)=cot? (k?Z)

 公式二:

 设?为任意角,?+?的三角函数值与?的三角函数值之间的关系:

 sin(?+?)=-sin?

 cos(?+?)=-cos?

 tan(?+?)=tan?

 cot(?+?)=cot?

 公式三:

 任意角?与 -?的三角函数值之间的关系:

 sin(-?)=-sin?

 cos(-?)=cos?

 tan(-?)=-tan?

 cot(-?)=-cot?

 公式四:

 利用公式二和公式三可以得到?-?与?的三角函数值之间的关系:

 sin(?-?)=sin?

 cos(?-?)=-cos?

 tan(?-?)=-tan?

 cot(?-?)=-cot?

 公式五:

 利用公式一和公式三可以得到2?-?与?的三角函数值之间的关系:

 sin(2?-?)=-sin?

 cos(2?-?)=cos?

 tan(2?-?)=-tan?

 cot(2?-?)=-cot?

 公式六:

 ?/2及3?/2与?的三角函数值之间的关系:

 sin(?/2+?)=cos?

 cos(?/2+?)=-sin?

 tan(?/2+?)=-cot?

 cot(?/2+?)=-tan?

 sin(?/2-?)=cos?

 cos(?/2-?)=sin?

 tan(?/2-?)=cot?

 cot(?/2-?)=tan?

 sin(3?/2+?)=-cos?

 cos(3?/2+?)=sin?

 tan(3?/2+?)=-cot?

 cot(3?/2+?)=-tan?

 sin(3?/2-?)=-cos?

 cos(3?/2-?)=-sin?

 tan(3?/2-?)=cot?

 cot(3?/2-?)=tan?

 (以上k?Z)

 注意:在做题时,将a看成锐角来做会比较好做。

 诱导公式记忆口诀

 ※规律总结※

 上面这些诱导公式可以概括为:

 对于?/2*k (k?Z)的三角函数值,

 ①当k是偶数时,得到?的同名函数值,即函数名不改变;

 ②当k是奇数时,得到?相应的余函数值,即sin?cos;cos?sin;tan?cot,cot?tan.

 (奇变偶不变)

 然后在前面加上把?看成锐角时原函数值的符号。

 (符号看象限)

 例如:

 sin(2?-?)=sin(4/2-?),k=4为偶数,所以取sin?。

 当?是锐角时,2?-(270?,360?),sin(2?-?)<0,符号为?-?。

 所以sin(2?-?)=-sin?

 上述的记忆口诀是:

 奇变偶不变,符号看象限。

 公式右边的符号为把?视为锐角时,角k?360?+?(k?Z),-?、180?,360?-?

 所在象限的原三角函数值的符号可记忆

 水平诱导名不变;符号看象限。

 #

 各种三角函数在四个象限的符号如何判断,也可以记住口诀?一全正;二正弦(余割);三两切;四余弦(正割)?.

 这十二字口诀的意思就是说:

 第一象限内任何一个角的四种三角函数值都是?+?;

 第二象限内只有正弦是?+?,其余全部是?-?;

 第三象限内切函数是?+?,弦函数是?-?;

 第四象限内只有余弦是?+?,其余全部是?-?.

 上述记忆口诀,一全正,二正弦,三内切,四余弦

 #

 还有一种按照函数类型分象限定正负:

 函数类型 第一象限 第二象限 第三象限 第四象限

 正弦 ...........+............+............?............?........

 余弦 ...........+............?............?............+........

 正切 ...........+............?............+............?........

 余切 ...........+............?............+............?........

 同角三角函数基本关系

 同角三角函数的基本关系式

 倒数关系:

 tan cot?=1

 sin csc?=1

 cos sec?=1

 商的关系:

 sin?/cos?=tan?=sec?/csc?

 cos?/sin?=cot?=csc?/sec?

 平方关系:

 sin^2(?)+cos^2(?)=1

 1+tan^2(?)=sec^2(?)

 1+cot^2(?)=csc^2(?)

 同角三角函数关系六角形记忆法

 六角形记忆法:(参看或参考资料链接)

 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

 (1)倒数关系:对角线上两个函数互为倒数;

 (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

高考数学题主要由选择题、填空题、解答题组成,针对不同题型,有不同的答题技巧和注意事项。比如选择题,如果实在不会做,可以使用排除法或代入法;解答题,一定要尽可能地详细解答,因为每一个步骤都是有分数的。

高考数学答题技巧

1、排除

排除方法是根据问题和相关知识你就知道你肯定不选择这一项,因此只剩下正确的选项.如果不能立即获得正确的选项,但是你们还是要对自己的需求都是要对这些有应的标准,提高解决问题的精度.注意去除这种方式还是一种解答这种大麻烦的好方式,也是解决选择问题的常用方法.

2、特殊值法

也就是说,根据标题中的条件,择选出来这种独特的方式还有知道他们,耳膜的内容关键都是要进行测量.在你使用这种方式答题的时候,你还是要看看这些方式都是有很多的要求会符合,你可以好好计算.

3、通过推测和测量,可以得到直接观测或结果

近年来,人们经常用这种方法来探索高考题中问题的规律性.这类问题的主要解决方法是采用不完整的归类方式,通过实验、猜测、试错验证、总结、归纳等过程,使问题得以解决.

高考数学答题注意事项

数列的题目与和相关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。

立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同。

导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前间中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。

概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验准确与否的重要途径。

遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成。

文章标签: # sin # cos # tan