您现在的位置是: 首页 > 热门专业 热门专业
高考答案数学2017二卷,17年高考数学二卷答案
tamoadmin 2024-06-29 人已围观
简介1.2017全国卷2,数学导数题目,解第二问,用分离参数构造新函数转化为最值问题解。拒绝灌水回答2.2017全国二卷数学,答案里画圈的一部为什么取e的-2次 17.(12分) △ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为? (1)求sinBsinC; (2)若6cosBcosC=1,a=3,求△ABC的周长 18.(12分) 如图,在四棱锥P-ABCD中,A
1.2017全国卷2,数学导数题目,解第二问,用分离参数构造新函数转化为最值问题解。拒绝灌水回答
2.2017全国二卷数学,答案里画圈的一部为什么取e的-2次
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为?
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)讨论的单调性;
(2)若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
2017全国卷2,数学导数题目,解第二问,用分离参数构造新函数转化为最值问题解。拒绝灌水回答
3cosa+4sina可以取值+/-5,在第三象限应为-5,因此-5-4-a=+/-17,解得a=-26/8;综合得a=-16,-26,8,18四个值。
参考答案为-16,18.只取第一象限点了
2017全国二卷数学,答案里画圈的一部为什么取e的-2次
最简单的做法是数型结合
(1)(-∞,-1-√2)减函数
(-1-√2,-1+√2)增函数
(-1+√2,+∞)减函数
在通过二阶导f''(x),可以近似画出f(x)图形
(2)第二问,f(0) = 1
设直线g(x) = ax +1 ,过(0,1)
在x>=0时,f(x) <= g(x)
也就是g(x)在x>=0区域横在f(x)上方,于是容易知道临界条件,直线在(0,1)和f(x)相切,
切线斜率容易求得 为1
摆动之间g(x)易得,a>=1时,g(x)在x>=0区域横在f(x)上方,满足f(x) <=ax+1
所以a >=1
要找一个接近0的数x,且h(x)要大于0
h(x)里含有lnx, 用e的某次方可以去ln
你可以试一下e的负一次方,h(e的负一次方)是小于0的
e的负一次方还不够接近0,取e的负二次方,很容易得到h(e的负二次方)大于0
如果取h(0.01),由于有ln,难以知道正负,除非有计算器,全国二卷是不能带计算器的。
上一篇:高考议论文时评,高中议论文时评
下一篇:高考词汇80_高考词汇887