您现在的位置是: 首页 > 热门专业 热门专业

高中集合和简易逻辑题讲解,集合简易逻辑高考题

tamoadmin 2024-05-14 人已围观

简介1.2011高考数学基础公式都有什么?课本应该做些什么?数学太差了怎么在剩余的5天提升点分数?这个知识点不难。经查询国家教育部信息可知,高中数学的集合和简易逻辑在高考中会单独考查一个集合的小题,整体来看题目难度不大,甚至可以说是比较简单的,这是高中数学的基础。这个知识点必须从一开始就高度重视,把基础打牢固,掌握其基本题型就可以了,简易逻辑考试内容:集合、子集、交集、补集、交集、并集,高中数学最难的

1.2011高考数学基础公式都有什么?课本应该做些什么?数学太差了怎么在剩余的5天提升点分数?

高中集合和简易逻辑题讲解,集合简易逻辑高考题

这个知识点不难。

经查询国家教育部信息可知,高中数学的集合和简易逻辑在高考中会单独考查一个集合的小题,整体来看题目难度不大,甚至可以说是比较简单的,这是高中数学的基础。

这个知识点必须从一开始就高度重视,把基础打牢固,掌握其基本题型就可以了,简易逻辑考试内容:集合、子集、交集、补集、交集、并集,高中数学最难的是椭圆,双曲线,抛物线这种曲线运动的题,一般高考会在后面几道大题中出一道这种类型的。

2011高考数学基础公式都有什么?课本应该做些什么?数学太差了怎么在剩余的5天提升点分数?

一、集合、简易逻辑(14课时,8个)

1.集合; 2.子集; 3.补集;

4.交集; 5.并集; 6.逻辑连结词;

7.四种命题; 8.充要条件.

二、函数(30课时,12个)

1.映射; 2.函数; 3.函数的单调性;

4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;

7.有理指数幂的运算; 8.指数函数; 9.对数;

10.对数的运算性质; 11.对数函数. 12.函数的应用举例.

三、数列(12课时,5个)

1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式;

4.等比数列及其通顶公式; 5.等比数列前n项和公式.

四、三角函数(46课时17个)

1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;

4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;

6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切;

8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;

10.周期函数; 11.函数的奇偶性; 12.函数 的图象;

13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理;

16余弦定理; 17斜三角形解法举例.

五、平面向量(12课时,8个)

1.向量 2.向量的加法与减法 3.实数与向量的积;

4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;

7.平面两点间的距离; 8.平移.

六、不等式(22课时,5个)

1.不等式; 2.不等式的基本性质; 3.不等式的证明;

4.不等式的解法; 5.含绝对值的不等式.

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;

4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;

7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;

10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.

八、圆锥曲线(18课时,7个)

1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;

4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;

7.抛物线的简单几何性质.

九、(B)直线、平面、简单何体(36课时,28个)

1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;

4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;

6.三垂线定理及其逆定理; 7.两个平面的位置关系;

8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;

10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;

13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;

16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;

19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;

22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;

25.棱柱; 26.棱锥; 27.正多面体; 28.球.

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’

4.组合; 5.组合数公式; 6.组合数的两个性质;

7.二项式定理; 8.二项展开式的性质.

十一、概率(12课时,5个)

1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率;

4.相互独立事件同时发生的概率; 5.独立重复试验.

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法;

4.总体分布的估计; 5.正态分布; 6.线性回归.

十三、极限(12课时,6个)

1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;

4.函数的极限; 5.极限的四则运算; 6.函数的连续性.

十四、导数(18课时,8个)

1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;

4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式;

7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.

十五、复数(4课时,4个)

主要还是靠自己从题目中钻研,给你发点吧,希望会有用。

加油!还有六十多天,希望我们都能考个好成绩

PS:可以去百度文库上查查,有题有公式

高中数学公式提升

一、集合、简易逻辑、函数

1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y=

2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。

3. 集合 A、B, 时,你是否注意到“极端”情况: 或 ;求集合的子集 时是否忘记 . 例如: 对一切 恒成立,求a的取植范围,你讨论了a=2的情况了吗?

4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足条件 的集合M共有多少个

5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?

6. 两集合之间的关系。

7. (CUA)∩( CU B) = CU(A∪B) (CUA)∪( CUB) = CU(A∩B); ;

8、可以判断真假的语句叫做命题.

逻辑连接词有“或”、“且”和“非”.

p、q形式的复合命题的真值表: (真且真,同假或假)

p q P且q P或q

真 真 真 真

真 假 假 真

假 真 假 真

假 假 假 假

9、 命题的四种形式及其相互关系:

互 逆

互 互

互 为 互

否 逆 逆 否

否 否

否 否

否 互 逆

原命题与逆否命题同真同假;逆命题与否命题同真同假.

函数的几个重要性质:

①如果函数 对于一切 ,都有 或f(2a-x)=f(x),那么函数 的图象关于直线 对称.

②函数 与函数 的图象关于直线 对称;

函数 与函数 的图象关于直线 对称;

函数 与函数 的图象关于坐标原点对称.

③若奇函数 在区间 上是递增函数,则 在区间 上也是递增函数.

④若偶函数 在区间 上是递增函数,则 在区间 上是递减函数.

⑤函数 的图象是把函数 的图象沿x轴向左平移a个单位得到的;函数 ( 的图象是把函数 的图象沿x轴向右平移 个单位得到的;

函数 +a 的图象是把函数 助图象沿y轴向上平移a个单位得到的;函数 +a 的图象是把函数 助图象沿y轴向下平移 个单位得到的.

立体几何

53、 有关平行垂直的证明主要利用线面关系的转化:线//线 线//面 面//面,线⊥线 线⊥面 面⊥面,垂直常用向量来证。

54、 作出二面角的平面角主要方法是什么?(定义法、三垂线法)三垂线法:一定平面,二作垂线,三作斜线,射影可见.

55、 二面角的求法主要有:解直角三角形、余弦定理、射影面积法、法向量

56、 求点到面的距离的常规方法是什么?(直接法、等体积变换法、法向量法)

57、 你记住三垂线定理及其逆定理了吗?

58、 有关球面上两点的球面距离的求法主要是找球心角,常常与经度及纬度联系在一起,你还记得经度及纬度的含义吗?(经度是面面角;纬度是线面角)

59、 你还记得简单多面体的欧拉公式吗?(V+F-E=2,其中V为顶点数,E是棱数,F为面数),棱的两种算法,你还记得吗?(①多面体每面为n边形,则E= ;②多面体每个顶点出发有m条棱,则E= )

概率统计

94、 有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件。

(1)若事件A、B为互斥事件,则P(A+B)=P(A)+P(B)

(2)若事件A、B为相互独立事件,则P(A?B)=P(A)?P(B)

(3)若事件A、B为对立事件,则P(A)+P(B)=1一般地,

(4)如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事恰好发生K次的概率:

95、 抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,每一部分只取一个;分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异。它们的共同特征是每个个体被抽到的概率相等。

96、 用总体估计样本的方法就是把样本的频率作为总体的概率。

十、解题方法和技巧

97、 总体应试策略:先易后难,一般先作选择题,再作填空题,最后作大题,选择题力保速度和准确度为后面大题节约出时间,但准确度是前提,对于填空题,看上去没有思路或计算太复杂可以放弃,对于大题,尽可能不留空白,把题目中的条件转化代数都有可能得分,在考试中学会放弃,摆脱一个题目无休止的纠缠,给自己营造一个良好的心理环境,这是考试成功的重要保证。

98、 解答选择题的特殊方法是什么?

(顺推法,估算法,特例法,特征分析法,直观选择法,逆推验证法、数形结合法等等)

99、 答填空题时应注意什么?(特殊化,图解,等价变形)

100、 解答应用型问题时,最基本要求是什么?

101、 审题、找准题目中的关键词,设未知数、列出函数关系式、代入初始条件、注明单位、作答学会跳步得分技巧,第一问不会,第二问也可以作,用到第一问就直接用第一问的结论即可,要学会用“由已知得”“由题意得”“由平面几何知识得”等语言来连接,一旦你想来了,可在后面写上“补证”即可。

数学高考应试技巧

数学考试时,有许多地方都要考生特别注意.在考试中掌握好各种做题技巧,可以帮助各位在最后关头鲤鱼跃龙门。

考试注意:

1.考前5分钟很重要

在考试中,要充分利用考前5分钟的时间。考卷发下后,可浏览题目。当准备工作(填写姓名、考号等)完成后,可以翻到后面的解答题,通读一遍,做到心中有数。

2.区别对待各档题目

考试题目分为易、中、难三种,它们的分值比约为3:5:2。考试中大家要根据自身状况分别对待。

⑴做容易题时,要争取一次做完,不要中间拉空。这类题要100%的拿分。

⑵做中等题时,要静下心来,尽量保证拿分,起码有80%的完成度。

⑶做难题时,大家通常会感觉无从下手。这时要做到:

①多读题目,仔细审题。

②在草稿上简单感觉一下。

③不要轻易放弃。许多同学一看是难题、大题,不多做考虑,就彻底投降。解答题多为小步设问,许多小问题同学们都是可以解决的,因此,每一个题、每一个问,考生都要认真对待。

3.时间分配要合理

⑴考试时主要是在选择题上抢时间。

⑵做题时要边做边检查,充分保证每一题的正确性。不要抱着“等做完后再重新检查”的念头而在后面浪费太多的时间用于检查。

⑶在交卷前30分钟要回头再检查一下自己的进度。注意及时填机读卡。

文章标签: # 函数 # 集合 # 平面